login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A266436
Decimal representation of the n-th iteration of the "Rule 23" elementary cellular automaton starting with a single ON (black) cell.
3
1, 7, 0, 127, 0, 2047, 0, 32767, 0, 524287, 0, 8388607, 0, 134217727, 0, 2147483647, 0, 34359738367, 0, 549755813887, 0, 8796093022207, 0, 140737488355327, 0, 2251799813685247, 0, 36028797018963967, 0, 576460752303423487, 0, 9223372036854775807, 0
OFFSET
0,2
COMMENTS
With the exception of a(1) the same as A266380, A266324 and A266218. - R. J. Mathar, Jan 10 2016
FORMULA
From Colin Barker, Dec 30 2015 and Apr 15 2019: (Start)
a(n) = ((-1)^n+2^(2*n+1)-(-1)^n*2^(2*n+1)-1)/2 for n>0.
a(n) = 17*a(n-2)-16*a(n-4) for n>4.
G.f.: (1+7*x-17*x^2+8*x^3+16*x^4) / ((1-x)*(1+x)*(1-4*x)*(1+4*x)).
(End)
a(n) = (2*4^n-1)*(n mod 2) + 0^n. - Karl V. Keller, Jr., Jul 06 2021
MATHEMATICA
rule=23; rows=20; ca=CellularAutomaton[rule, {{1}, 0}, rows-1, {All, All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]], {rows-k+1, rows+k-1}], {k, 1, rows}]; (* Truncated list of each row *) Table[FromDigits[catri[[k]], 2], {k, 1, rows}] (* Decimal Representation of Rows *)
PROG
(Python) print([(2*4**n-1)*(n%2) + 0**n for n in range(33)]) # Karl V. Keller, Jr., Jul 06 2021
CROSSREFS
Cf. A241955, A266434, A266435 (binary).
Sequence in context: A352078 A046273 A167317 * A240822 A240810 A024094
KEYWORD
nonn,easy
AUTHOR
Robert Price, Dec 29 2015
STATUS
approved