login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A185302
a(n) = Sum_{d|n} d*sigma(n/d)^d.
1
1, 5, 7, 29, 11, 131, 15, 445, 214, 1315, 23, 6755, 27, 15475, 5807, 62589, 35, 207302, 39, 680419, 116277, 1948963, 47, 7702195, 38936, 20726659, 2365954, 72743987, 59, 227262211, 63, 735070461, 46142609, 2195383507, 2123475, 7556177030, 75, 22082968771
OFFSET
1,2
COMMENTS
Logarithmic derivative of A185301.
FORMULA
L.g.f.: Sum_{n>=1} Sum_{k>=1} sigma(n)^k * x^(n*k)/n = Sum_{n>=1} a(n)*x^n/n.
EXAMPLE
L.g.f.: L(x) = x + 5*x^2/2 + 7*x^3/3 + 29*x^4/4 + 11*x^5/5 + 131*x^6/6 + ... where exp(L(x)) = 1 + x + 3*x^2 + 5*x^3 + 14*x^4 + 20*x^5 + 59*x^6 + 83*x^7 + 229*x^8 + 350*x^9 + 878*x^10 + ... + A185301(n)*x^n + ...
MATHEMATICA
a[n_] := DivisorSum[n, # * DivisorSigma[1, n/#]^# &]; Array[a, 40] (* Amiram Eldar, Aug 18 2023 *)
PROG
(PARI) {a(n)=sumdiv(n, d, d*sigma(n/d)^d)}
CROSSREFS
Sequence in context: A317166 A126888 A358582 * A179305 A307100 A229337
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 25 2012
STATUS
approved