login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A198299 L.g.f.: Sum_{n>=1} (x^n/n) / Product_{d|n} (1 - d*x^n). 4
1, 3, 4, 11, 6, 36, 8, 83, 49, 178, 12, 680, 14, 920, 714, 2707, 18, 7119, 20, 14166, 7844, 22564, 24, 94616, 3931, 106538, 88987, 306604, 30, 832606, 32, 1401715, 974736, 2228278, 150758, 9643703, 38, 9961532, 10363682, 28802278, 42, 78793604, 44, 123016344 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Forms the logarithmic derivative of A198296.

LINKS

Paul D. Hanna, Table of n, a(n) for n = 1..500

FORMULA

L.g.f.: Sum_{n>=1} x^n/n * exp( Sum_{k>=1} sigma(n,k) * x^(n*k)/k ), where sigma(n,k) is the sum of the k-th powers of the divisors of n.

EXAMPLE

L.g.f.: L(x) = x + 3*x^2/2 + 4*x^3/3 + 11*x^4/4 + 6*x^5/5 + 36*x^6/6 +...

such that, by definition:

L(x) = x/(1-x) + (x^2/2)/((1-x^2)*(1-2*x^2)) + (x^3/3)/((1-x^3)*(1-3*x^3)) + (x^4/4)/((1-x^4)*(1-2*x^4)*(1-4*x^4)) + (x^5/5)/((1-x^5)*(1-5*x^5)) + (x^6/6)/((1-x^6)*(1-2*x^6)*(1-3*x^6)*(1-6*x^6)) +...+ (x^n/n)/Product_{d|n} (1-d*x^n) +...

Also, we have the identity:

L(x) = (1 + x + x^2 + x^3 + x^4 + x^5 +...)*x

+ (1 + 3*x^2 + 7*x^4 + 15*x^6 + 31*x^8 +...)*x^2/2

+ (1 + 4*x^3 + 13*x^6 + 40*x^9 + 121*x^12 +...)*x^3/3

+ (1 + 7*x^4 + 35*x^8 + 155*x^12 + 651*x^16 +...)*x^4/4

+ (1 + 6*x^5 + 31*x^10 + 156*x^15 + 781*x^20 +...)*x^5/5

+ (1 + 12*x^6 + 97*x^12 + 672*x^18 + 4333*x^24 +...)*x^6/6 +...

+ exp( Sum_{k>=1} sigma(n,k)*x^(n*k)/k )*x^n/n +...

Exponentiation yields the g.f. of A198296:

exp(L(x)) = 1 + x + 2*x^2 + 3*x^3 + 6*x^4 + 8*x^5 + 17*x^6 + 22*x^7 +...

PROG

(PARI) {a(n)=n*polcoeff(sum(m=1, n+1, x^m/m*exp(sum(k=1, n\m, sigma(m, k)*x^(m*k)/k)+x*O(x^n))), n)}

(PARI) {a(n)=n*polcoeff(sum(m=1, n+1, x^m/m*exp(sumdiv(m, d, -log(1-d*x^m+x*O(x^n))))), n)}

CROSSREFS

Cf. A198296 (exp), A198305.

Sequence in context: A335888 A328851 A197953 * A175317 A056045 A220848

Adjacent sequences:  A198296 A198297 A198298 * A198300 A198301 A198302

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Jan 26 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 24 13:48 EDT 2021. Contains 346273 sequences. (Running on oeis4.)