The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A198299 L.g.f.: Sum_{n>=1} (x^n/n) / Product_{d|n} (1 - d*x^n). 4
 1, 3, 4, 11, 6, 36, 8, 83, 49, 178, 12, 680, 14, 920, 714, 2707, 18, 7119, 20, 14166, 7844, 22564, 24, 94616, 3931, 106538, 88987, 306604, 30, 832606, 32, 1401715, 974736, 2228278, 150758, 9643703, 38, 9961532, 10363682, 28802278, 42, 78793604, 44, 123016344 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Forms the logarithmic derivative of A198296. LINKS Paul D. Hanna, Table of n, a(n) for n = 1..500 FORMULA L.g.f.: Sum_{n>=1} x^n/n * exp( Sum_{k>=1} sigma(n,k) * x^(n*k)/k ), where sigma(n,k) is the sum of the k-th powers of the divisors of n. EXAMPLE L.g.f.: L(x) = x + 3*x^2/2 + 4*x^3/3 + 11*x^4/4 + 6*x^5/5 + 36*x^6/6 +... such that, by definition: L(x) = x/(1-x) + (x^2/2)/((1-x^2)*(1-2*x^2)) + (x^3/3)/((1-x^3)*(1-3*x^3)) + (x^4/4)/((1-x^4)*(1-2*x^4)*(1-4*x^4)) + (x^5/5)/((1-x^5)*(1-5*x^5)) + (x^6/6)/((1-x^6)*(1-2*x^6)*(1-3*x^6)*(1-6*x^6)) +...+ (x^n/n)/Product_{d|n} (1-d*x^n) +... Also, we have the identity: L(x) = (1 + x + x^2 + x^3 + x^4 + x^5 +...)*x + (1 + 3*x^2 + 7*x^4 + 15*x^6 + 31*x^8 +...)*x^2/2 + (1 + 4*x^3 + 13*x^6 + 40*x^9 + 121*x^12 +...)*x^3/3 + (1 + 7*x^4 + 35*x^8 + 155*x^12 + 651*x^16 +...)*x^4/4 + (1 + 6*x^5 + 31*x^10 + 156*x^15 + 781*x^20 +...)*x^5/5 + (1 + 12*x^6 + 97*x^12 + 672*x^18 + 4333*x^24 +...)*x^6/6 +... + exp( Sum_{k>=1} sigma(n,k)*x^(n*k)/k )*x^n/n +... Exponentiation yields the g.f. of A198296: exp(L(x)) = 1 + x + 2*x^2 + 3*x^3 + 6*x^4 + 8*x^5 + 17*x^6 + 22*x^7 +... PROG (PARI) {a(n)=n*polcoeff(sum(m=1, n+1, x^m/m*exp(sum(k=1, n\m, sigma(m, k)*x^(m*k)/k)+x*O(x^n))), n)} (PARI) {a(n)=n*polcoeff(sum(m=1, n+1, x^m/m*exp(sumdiv(m, d, -log(1-d*x^m+x*O(x^n))))), n)} CROSSREFS Cf. A198296 (exp), A198305. Sequence in context: A335888 A328851 A197953 * A360948 A175317 A056045 Adjacent sequences: A198296 A198297 A198298 * A198300 A198301 A198302 KEYWORD nonn AUTHOR Paul D. Hanna, Jan 26 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 23 04:41 EDT 2024. Contains 372758 sequences. (Running on oeis4.)