The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A197953 a(n) = 1 + Sum_{d|n, d>1} d * a(n/d). 3
 1, 3, 4, 11, 6, 24, 8, 43, 22, 38, 12, 128, 14, 52, 54, 171, 18, 186, 20, 206, 74, 80, 24, 640, 56, 94, 130, 284, 30, 494, 32, 683, 114, 122, 118, 1226, 38, 136, 134, 1038, 42, 682, 44, 440, 432, 164, 48, 3072, 106, 488, 174, 518, 54, 1374, 182, 1436, 194 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Logarithmic derivative of A129374, where g.f. G(x) of A129374 satisfies: G(x) = 1/(1-x) * G(x^2)*G(x^3)*G(x^4)*...*G(x^n)*... LINKS Seiichi Manyama, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Paul D. Hanna) FORMULA L.g.f. satisfies: L(x) = -log(1-x) + Sum_{n>1} L(x^n), where L(x) = Sum_{n>=1} a(n)*x^n/n. EXAMPLE L.g.f.: L(x) = x + 3*x^2/2 + 4*x^3/3 + 11*x^4/4 + 6*x^5/5 + 24*x^6/6 +... where L(x) = -log(1-x) + L(x^2) + L(x^3) + L(x^4) + L(x^5) +...+ L(x^n) +... also, exp(L(x)) is the g.f. of A129374: exp(L(x)) = 1 + x + 2*x^2 + 3*x^3 + 6*x^4 + 8*x^5 + 15*x^6 + 20*x^7 +... PROG (PARI) {a(n)=sumdiv(n, d, d*if(d==1, 1, a(n/d)))} (PARI) /* L.g.f. satisfies: L(x) = -log(1-x) + Sum_{n>1} L(x^n) */ {a(n)=local(L=x, X=x+x*O(x^n)); for(i=1, n, L=-log(1-X)+sum(m=2, n, subst(L, x, x^m+x*O(x^n)))); n*polcoeff(L, n)} CROSSREFS Cf. A067824, A129374, A307607. Sequence in context: A335887 A335888 A328851 * A198299 A360948 A175317 Adjacent sequences: A197950 A197951 A197952 * A197954 A197955 A197956 KEYWORD nonn AUTHOR Paul D. Hanna, Oct 19 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 28 19:55 EDT 2024. Contains 372919 sequences. (Running on oeis4.)