login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A197953
a(n) = 1 + Sum_{d|n, d>1} d * a(n/d).
3
1, 3, 4, 11, 6, 24, 8, 43, 22, 38, 12, 128, 14, 52, 54, 171, 18, 186, 20, 206, 74, 80, 24, 640, 56, 94, 130, 284, 30, 494, 32, 683, 114, 122, 118, 1226, 38, 136, 134, 1038, 42, 682, 44, 440, 432, 164, 48, 3072, 106, 488, 174, 518, 54, 1374, 182, 1436, 194
OFFSET
1,2
COMMENTS
Logarithmic derivative of A129374, where g.f. G(x) of A129374 satisfies: G(x) = 1/(1-x) * G(x^2)*G(x^3)*G(x^4)*...*G(x^n)*...
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Paul D. Hanna)
FORMULA
L.g.f. satisfies: L(x) = -log(1-x) + Sum_{n>1} L(x^n), where L(x) = Sum_{n>=1} a(n)*x^n/n.
EXAMPLE
L.g.f.: L(x) = x + 3*x^2/2 + 4*x^3/3 + 11*x^4/4 + 6*x^5/5 + 24*x^6/6 +...
where
L(x) = -log(1-x) + L(x^2) + L(x^3) + L(x^4) + L(x^5) +...+ L(x^n) +...
also, exp(L(x)) is the g.f. of A129374:
exp(L(x)) = 1 + x + 2*x^2 + 3*x^3 + 6*x^4 + 8*x^5 + 15*x^6 + 20*x^7 +...
PROG
(PARI) {a(n)=sumdiv(n, d, d*if(d==1, 1, a(n/d)))}
(PARI) /* L.g.f. satisfies: L(x) = -log(1-x) + Sum_{n>1} L(x^n) */
{a(n)=local(L=x, X=x+x*O(x^n)); for(i=1, n, L=-log(1-X)+sum(m=2, n, subst(L, x, x^m+x*O(x^n)))); n*polcoeff(L, n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 19 2011
STATUS
approved