OFFSET
0,3
COMMENTS
McGuire, Tugemann, & Civario find a(3) = 17.
15 <= a(4) <= 55. The upper bound is shown by the example below. - David Radcliffe, Dec 29 2019
For all n, a(n) >= n^2 - 1. The solution to a puzzle with fewer solutions cannot be unique, because we can generate another solution by swapping two numbers that are not given as clues. - David Radcliffe, Dec 29 2019
LINKS
James Grime and Brady Haran, 17 and sudoku clues, Numberphile video (2012).
Agnes M. Herzberg, and M. Ram Murty. Sudoku squares and chromatic polynomials, Notices of the AMS 54, no. 6 (2007): 708-717.
Gary McGuire, Bastian Tugemann, and Gilles Civario, There is no 16-clue sudoku: solving the sudoku minimum number of clues problem via hitting set enumeration, arXiv:1201.0749 [cs.DS], 2012-2013.
Gary McGuire, Bastian Tugemann, and Gilles Civario, There is no 16-clue Sudoku: solving the Sudoku minimum number of clues problem via hitting set enumeration, Experimental Mathematics 23.2 (2014): 190-217.
The New Sudoku Players' Forum, Minimum givens on larger puzzles.
Wikipedia, Mathematics of Sudoku.
EXAMPLE
Every 4 X 4 board with 3 filled squares either cannot be completed, or can be completed in two or more ways. But with 4 filled squares it is possible:
+-----+-----+
| . 1 | 2 . |
| . . | . . |
+-----+-----+
| . . | 1 . |
| . . | . 3 |
+-----+-----+
Thus a(2) = 4.
The following 16 X 16 puzzle with 55 clues has a unique solution:
+------------+------------+------------+------------+
| . . . 9 | . . . . | . 3 . . | . . . 2 |
| . . . . |15 . . 12 |16 . . . | . 10 . 8 |
| . 4 . 5 | . . . . | . 9 . . | . . . . |
| . . . . | . . . 10 | . . 13 . | . . . 15 |
+------------+------------+------------+------------+
| . . 8 . | . . . . | . . . . | . . . 16 |
| . . . . | . 5 . . | . . . . | . . . . |
|10 . 15 . | . . . . | . . . . | . . . 12 |
| . . . . | . 13 9 . | . 4 . . | . . 7 . |
+------------+------------+------------+------------+
| . . . . |16 . . 14 | . . . . | . . . . |
| . 5 . 4 | . . . . | . 7 . 11 | 1 13 9 . |
| . . . 3 | . . . . | . 1 . . | 5 . 4 . |
| . . . . |10 . . 15 | . . . . | . . . . |
+------------+------------+------------+------------+
|15 . 16 . | . . . . | 8 . 10 . | . . . 14 |
| . . . . | . 1 4 . | . . . . | 2 . 5 . |
| 8 . . . | . . . . |12 . 16 . | . . . . |
| . . . . | . 9 7 3 | . . . . | . . 1 . |
+------------+------------+------------+------------+
Thus a(4) <= 55.
CROSSREFS
KEYWORD
nonn,hard,bref
AUTHOR
Charles R Greathouse IV, Jan 26 2012
STATUS
approved