OFFSET
1,8
COMMENTS
a(n) <= n, since Fibonacci(n) divides Fibonacci(2n) and phi(x) divides phi(y) if x divides y. - Robert Israel, Dec 01 2016
EXAMPLE
a(7) = 1 because phi(Fibonacci(7)) = phi(Fibonacci(8)) = 12.
MAPLE
f:= proc(n) uses combinat, numtheory; local k, phin;
phin:= phi(fibonacci(n));
for k from 1 do if phi(fibonacci(n+k)) mod phin = 0 then return k fi od
end proc;
map(f, [$1..100]); # Robert Israel, Dec 01 2016
MATHEMATICA
Table[k = 1; While[Mod[EulerPhi@ Fibonacci[n + k], EulerPhi@ Fibonacci@ n] != 0, k++]; k, {n, 82}] (* Michael De Vlieger, Nov 23 2016 *)
PROG
(PARI) a(n) = {my(k=1); while (eulerphi(fibonacci(n+k)) % eulerphi(fibonacci(n)), k++); k; } \\ Michel Marcus, Nov 19 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Altug Alkan, Oct 07 2016
STATUS
approved