login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A200620 Decimal expansion of the lesser of two values of x satisfying 5*x^2 - 1 = tan(x) and 0 < x < Pi/2. 3
5, 7, 3, 8, 2, 5, 6, 1, 4, 2, 2, 0, 7, 0, 7, 5, 1, 9, 4, 7, 0, 6, 9, 9, 3, 0, 7, 3, 9, 5, 0, 2, 8, 9, 7, 2, 0, 4, 0, 0, 1, 2, 6, 2, 0, 5, 6, 7, 5, 7, 0, 8, 3, 3, 8, 2, 7, 1, 3, 0, 1, 2, 7, 4, 1, 8, 7, 9, 3, 4, 4, 0, 9, 7, 0, 1, 7, 1, 2, 2, 0, 9, 2, 8, 2, 1, 3, 3, 5, 3, 7, 0, 0, 6, 1, 5, 4, 5, 0 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
See A200614 for a guide to related sequences. The Mathematica program includes a graph.
LINKS
EXAMPLE
lesser: 0.5738256142207075194706993073950289720400...
greater: 1.469002719513610613223362597583632411278000...
MATHEMATICA
a = 5; c = 1;
f[x_] := a*x^2 - c; g[x_] := Tan[x]
Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, .5, .6}, WorkingPrecision -> 110]
RealDigits[r] (* A200620 *)
r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]
RealDigits[r] (* A200621 *)
CROSSREFS
Sequence in context: A261624 A152081 A264736 * A195389 A345653 A091663
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Nov 20 2011
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 23 07:56 EDT 2024. Contains 371905 sequences. (Running on oeis4.)