The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A200620 Decimal expansion of the lesser of two values of x satisfying 5*x^2 - 1 = tan(x) and 0 < x < Pi/2. 3
 5, 7, 3, 8, 2, 5, 6, 1, 4, 2, 2, 0, 7, 0, 7, 5, 1, 9, 4, 7, 0, 6, 9, 9, 3, 0, 7, 3, 9, 5, 0, 2, 8, 9, 7, 2, 0, 4, 0, 0, 1, 2, 6, 2, 0, 5, 6, 7, 5, 7, 0, 8, 3, 3, 8, 2, 7, 1, 3, 0, 1, 2, 7, 4, 1, 8, 7, 9, 3, 4, 4, 0, 9, 7, 0, 1, 7, 1, 2, 2, 0, 9, 2, 8, 2, 1, 3, 3, 5, 3, 7, 0, 0, 6, 1, 5, 4, 5, 0 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS See A200614 for a guide to related sequences. The Mathematica program includes a graph. LINKS Table of n, a(n) for n=0..98. EXAMPLE lesser: 0.5738256142207075194706993073950289720400... greater: 1.469002719513610613223362597583632411278000... MATHEMATICA a = 5; c = 1; f[x_] := a*x^2 - c; g[x_] := Tan[x] Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, .5, .6}, WorkingPrecision -> 110] RealDigits[r] (* A200620 *) r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110] RealDigits[r] (* A200621 *) CROSSREFS Cf. A200614, A200621. Sequence in context: A261624 A152081 A264736 * A195389 A345653 A091663 Adjacent sequences: A200617 A200618 A200619 * A200621 A200622 A200623 KEYWORD nonn,cons AUTHOR Clark Kimberling, Nov 20 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 23 07:56 EDT 2024. Contains 371905 sequences. (Running on oeis4.)