login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A264736
Decimal expansion of Product_{p prime > 2} 1-1/(p^2-3p+3), a constant related to I. M. Vinogradov's proof of the "ternary" Goldbach conjecture.
0
5, 7, 3, 8, 1, 3, 8, 6, 2, 6, 1, 2, 0, 7, 0, 5, 9, 9, 0, 4, 7, 8, 8, 6, 3, 9, 3, 4, 5, 7, 9, 0, 6, 3, 2, 7, 6, 6, 4, 7, 7, 6, 1, 0, 9, 5, 5, 8, 6, 8, 7, 3, 8, 6, 2, 4, 8, 7, 0, 9, 3, 8, 7, 1, 4, 6, 2, 2, 4, 3, 8, 8, 5, 7, 6, 7, 0, 1, 3, 6, 8, 1, 9, 2, 8, 5, 4, 5, 7, 7, 5, 2, 8, 5, 2, 0, 6, 3, 0
OFFSET
0,1
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.1 Hardy-Littlewood Constants, p. 88.
LINKS
Eric Weisstein's MathWorld, Goldbach's Conjecture.
Eric Weisstein's MathWorld, Vinogradov's theorem.
FORMULA
Equals A005597 / A271951.
EXAMPLE
0.5738138626120705990478863934579063276647761095586873862487...
MATHEMATICA
$MaxExtraPrecision = 600; digits = 99; terms = 600; P[n_] := PrimeZetaP[n] - 1/2^n; LR = LinearRecurrence[{6, -14, 15, -6}, {0, 0, -2, -9}, terms + 10]; r[n_Integer] := LR[[n]]; Exp[NSum[r[n]*P[n-1]/(n-1), {n, 3, terms}, NSumTerms -> terms, WorkingPrecision -> digits+10]] // RealDigits[#, 10, digits]& // First
PROG
(PARI) prodeulerrat(1-1/(p^2-3*p+3), 1, 3) \\ Amiram Eldar, Mar 11 2021
CROSSREFS
Sequence in context: A374003 A261624 A152081 * A200620 A195389 A345653
KEYWORD
nonn,cons
AUTHOR
STATUS
approved