The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A264736 Decimal expansion of Product_{p prime > 2} 1-1/(p^2-3p+3), a constant related to I. M. Vinogradov's proof of the "ternary" Goldbach conjecture. 0
 5, 7, 3, 8, 1, 3, 8, 6, 2, 6, 1, 2, 0, 7, 0, 5, 9, 9, 0, 4, 7, 8, 8, 6, 3, 9, 3, 4, 5, 7, 9, 0, 6, 3, 2, 7, 6, 6, 4, 7, 7, 6, 1, 0, 9, 5, 5, 8, 6, 8, 7, 3, 8, 6, 2, 4, 8, 7, 0, 9, 3, 8, 7, 1, 4, 6, 2, 2, 4, 3, 8, 8, 5, 7, 6, 7, 0, 1, 3, 6, 8, 1, 9, 2, 8, 5, 4, 5, 7, 7, 5, 2, 8, 5, 2, 0, 6, 3, 0 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 REFERENCES Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.1 Hardy-Littlewood Constants, p. 88. LINKS Eric Weisstein's MathWorld, Goldbach's Conjecture Eric Weisstein's MathWorld, Vinogradov's theorem Wikipedia, Goldbach's conjecture Wikipedia, Vinogradov's theorem FORMULA Equals A005597 / A271951. EXAMPLE 0.5738138626120705990478863934579063276647761095586873862487... MATHEMATICA \$MaxExtraPrecision = 600; digits = 99; terms = 600; P[n_] := PrimeZetaP[n] - 1/2^n; LR = LinearRecurrence[{6, -14, 15, -6}, {0, 0, -2, -9}, terms + 10]; r[n_Integer] := LR[[n]]; Exp[NSum[r[n]*P[n-1]/(n-1), {n, 3, terms}, NSumTerms -> terms, WorkingPrecision -> digits+10]] // RealDigits[#, 10, digits]& // First CROSSREFS Cf. A005597, A271951. Sequence in context: A155529 A261624 A152081 * A200620 A195389 A091663 Adjacent sequences:  A264733 A264734 A264735 * A264737 A264738 A264739 KEYWORD nonn,cons AUTHOR Jean-François Alcover, Apr 17 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 11 15:12 EDT 2020. Contains 336428 sequences. (Running on oeis4.)