The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A264734 Prime powers k such that k - 2 and k + 2 are prime powers. 2
 3, 5, 7, 9, 11, 25, 27, 29, 81, 241, 59051, 450283905890997361, 36472996377170786401 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS From Robert Israel, Nov 22 2015: (Start) a(14) > 3^1000 - 2 if it exists. One of a(n), a(n)+2 and a(n)-2 must be a power of 3. (End) LINKS EXAMPLE 81 is in this sequence because 81 - 2 = 79, 81 and 81 + 2 = 83 are all prime powers. MAPLE ispp:= proc(x) local p, r;   if isprime(x) then return true fi;   p:= 2;   do      r:= iroot(x, p);      if r^p = x then return isprime(r) fi;      if r < 2 then return false fi;      p:= nextprime(p);   od: end proc: ispp(1):= true: A:= NULL; for n from 1 to 1000 do   B:= map(ispp, [3^n-4, 3^n-2, 3^n+2, 3^n+4]);   if B[1] and B[2] then A:= A, 3^n-2 fi;   if B[2] and B[3] then A:= A, 3^n fi;   if B[3] and B[4] then A:= A, 3^n+2 fi; od: A; # Robert Israel, Nov 22 2015 MATHEMATICA Prepend[Select[Range@ 100000, AllTrue[{# - 2, #, # + 2}, PrimePowerQ] &], 3] (* Michael De Vlieger, Dec 03 2015, Version 10 *) PROG (MAGMA) [n: n in [5..100000] | IsPrimePower(n-2) and IsPrimePower(n) and IsPrimePower(n+2)]; (PARI) is(k) = isprimepower(k) || k==1; for(k=1, 1e6, if(is(k) && is(k+2) && is(k-2), print1(k, ", "))) \\ Altug Alkan, Nov 22 2015 CROSSREFS Cf. A000961, A144234, A264744. Sequence in context: A088049 A229364 A029660 * A004156 A081936 A238795 Adjacent sequences:  A264731 A264732 A264733 * A264735 A264736 A264737 KEYWORD nonn,more AUTHOR Juri-Stepan Gerasimov, Nov 22 2015 EXTENSIONS a(12) and a(13) from Robert Israel, Nov 22 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 2 03:43 EST 2021. Contains 349437 sequences. (Running on oeis4.)