login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A264733
a(n) is the smallest number > 1 such that the concatenation a(1)a(2)...a(n) is a perfect power.
6
4, 9, 13, 31556, 4433200001, 7330164793357114944, 364233003001227343654904892703798707409, 30558883460500823396683989630832748682356643682219859233661160618544138815441
OFFSET
1,1
LINKS
Amarnath Murthy, Exploring some new ideas on Smarandache type sets, functions and sequences, Smarandache Notions Journal Vol. 11 N. 1-2-3 Spring 2000. p. 172 (breakup sequences).
MAPLE
a[1]:= 4: C:= 4:
for n from 2 to 9 do
looking:= true;
for d from 1 while looking do
L:= 10^d*C + 10^(d-1);
U:= 10^d*C + 10^d - 1;
p:= 1;
while p < ilog2(U) do
p:= nextprime(p);
Lp:= ceil(L^(1/p));
Up:= floor(U^(1/p));
while not (Lp::integer and Up::integer) do
Digits:= 2*Digits;
Lp:= eval(Lp);
Up:= eval(Up);
od;
if Lp <= Up then
Cp:= Lp^p;
a[n]:= Cp - 10^d*C;
C:= Cp;
looking:= false;
break
fi
od
od
od:
seq(a[i], i=1..9); # Robert Israel, Nov 27 2015
MATHEMATICA
a = {}; Do[k = 2; While[! Or[# == 1, GCD @@ FactorInteger[#][[All, -1]] > 1] &@ FromDigits@ Flatten@ Join[#, IntegerDigits@ k], k++] &@ Map[IntegerDigits, a]; AppendTo[a, k], {i, 4}]; a (* Michael De Vlieger, Jan 23 2017 *)
PROG
(PARI) first(m)=my(s="4"); print1(4, ", "); for(i=2, m, n=1; while(!ispower(eval(concat(s, Str(n)))), n++); print1(n, ", "); s=concat(s, Str(n)))
CROSSREFS
KEYWORD
nonn,base,hard
AUTHOR
Anders Hellström, Nov 22 2015
EXTENSIONS
a(5)-a(8) from Jon E. Schoenfield, Nov 22 2015
STATUS
approved