login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the smallest number > 1 such that the concatenation a(1)a(2)...a(n) is a perfect power.
6

%I #51 Jan 16 2021 02:51:19

%S 4,9,13,31556,4433200001,7330164793357114944,

%T 364233003001227343654904892703798707409,

%U 30558883460500823396683989630832748682356643682219859233661160618544138815441

%N a(n) is the smallest number > 1 such that the concatenation a(1)a(2)...a(n) is a perfect power.

%H Robert Israel, <a href="/A264733/b264733.txt">Table of n, a(n) for n = 1..10</a>

%H Amarnath Murthy, <a href="https://web.archive.org/web/20150912233950/http://www.gallup.unm.edu/~smarandache/SN/ScArt5/ExploringNewIdeas.pdf">Exploring some new ideas on Smarandache type sets, functions and sequences</a>, Smarandache Notions Journal Vol. 11 N. 1-2-3 Spring 2000. p. 172 (breakup sequences).

%p a[1]:= 4: C:= 4:

%p for n from 2 to 9 do

%p looking:= true;

%p for d from 1 while looking do

%p L:= 10^d*C + 10^(d-1);

%p U:= 10^d*C + 10^d - 1;

%p p:= 1;

%p while p < ilog2(U) do

%p p:= nextprime(p);

%p Lp:= ceil(L^(1/p));

%p Up:= floor(U^(1/p));

%p while not (Lp::integer and Up::integer) do

%p Digits:= 2*Digits;

%p Lp:= eval(Lp);

%p Up:= eval(Up);

%p od;

%p if Lp <= Up then

%p Cp:= Lp^p;

%p a[n]:= Cp - 10^d*C;

%p C:= Cp;

%p looking:= false;

%p break

%p fi

%p od

%p od

%p od:

%p seq(a[i],i=1..9); # _Robert Israel_, Nov 27 2015

%t a = {}; Do[k = 2; While[! Or[# == 1, GCD @@ FactorInteger[#][[All, -1]] > 1] &@ FromDigits@ Flatten@ Join[#, IntegerDigits@ k], k++] &@ Map[IntegerDigits, a]; AppendTo[a, k], {i, 4}]; a (* _Michael De Vlieger_, Jan 23 2017 *)

%o (PARI) first(m)=my(s="4"); print1(4, ", "); for(i=2,m,n=1; while(!ispower(eval(concat(s,Str(n)))),n++); print1(n, ", "); s=concat(s,Str(n)))

%Y Cf. A001597(perfect powers), A051671, A061109, A061110, A261696, A264738, A264776, A264777, A264804, A264842, A264848, A264849.

%K nonn,base,hard

%O 1,1

%A _Anders Hellström_, Nov 22 2015

%E a(5)-a(8) from _Jon E. Schoenfield_, Nov 22 2015