login
A041211
Denominators of continued fraction convergents to sqrt(116).
2
1, 1, 4, 9, 13, 61, 74, 209, 701, 910, 18901, 19811, 78334, 176479, 254813, 1195731, 1450544, 4096819, 13741001, 17837820, 370497401, 388335221, 1535503064, 3459341349, 4994844413, 23438719001, 28433563414, 80305845829, 269351100901, 349656946730
OFFSET
0,3
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,19602,0,0,0,0,0,0,0,0,0,-1).
FORMULA
G.f.: -(x^18 -x^17 +4*x^16 -9*x^15 +13*x^14 -61*x^13 +74*x^12 -209*x^11 +701*x^10 -910*x^9 -701*x^8 -209*x^7 -74*x^6 -61*x^5 -13*x^4 -9*x^3 -4*x^2 -x -1) / ((x^10 -140*x^5 -1)*(x^10 +140*x^5 -1)). - Colin Barker, Nov 14 2013
a(n) = 19602*a(n-10) - a(n-20). - Vincenzo Librandi, Dec 13 2013
MATHEMATICA
Denominator[Convergents[Sqrt[116], 30]] (* Vincenzo Librandi, Dec 13 2013 *)
LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 0, 0, 19602, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1}, {1, 1, 4, 9, 13, 61, 74, 209, 701, 910, 18901, 19811, 78334, 176479, 254813, 1195731, 1450544, 4096819, 13741001, 17837820}, 30] (* Harvey P. Dale, Dec 14 2024 *)
PROG
(Magma) I:=[1, 1, 4, 9, 13, 61, 74, 209, 701, 910, 18901, 19811, 78334, 176479, 254813, 1195731, 1450544, 4096819, 13741001, 17837820]; [n le 20 select I[n] else 19602*Self(n-10)-Self(n-20): n in [1..40]]; // Vincenzo Librandi, Dec 13 2013
CROSSREFS
Sequence in context: A041323 A319217 A041028 * A042323 A042083 A264733
KEYWORD
nonn,frac,easy
AUTHOR
EXTENSIONS
More terms from Colin Barker, Nov 14 2013
Corrected term of signature by Vincenzo Librandi, Dec 13 2013
STATUS
approved