This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A041209 Denominators of continued fraction convergents to sqrt(115). 2
 1, 1, 3, 4, 7, 11, 18, 29, 76, 105, 2176, 2281, 6738, 9019, 15757, 24776, 40533, 65309, 171151, 236460, 4900351, 5136811, 15173973, 20310784, 35484757, 55795541, 91280298, 147075839, 385431976, 532507815, 11035588276, 11568096091, 34171780458, 45739876549 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,2252,0,0,0,0,0,0,0,0,0,-1). FORMULA G.f.: -(x^2-x-1)*(x^16+4*x^14+11*x^12+29*x^10+105*x^8+29*x^6+11*x^4+4*x^2+1) / (x^20-2252*x^10+1). - Colin Barker, Nov 14 2013 a(n) = 2252*a(n-10) - a(n-20). - Vincenzo Librandi, Dec 13 2013 MATHEMATICA Denominator[Convergents[Sqrt[115], 30]] (* Harvey P. Dale, Oct 22 2012 *) CoefficientList[Series[-(x^2 - x - 1) (x^16 + 4 x^14 + 11 x^12 + 29 x^10 + 105 x^8 + 29 x^6 + 11 x^4 + 4 x^2 + 1)/(x^20 - 2252 x^10 + 1), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 13 2013 *) PROG (MAGMA) I:=[1, 1, 3, 4, 7, 11, 18, 29, 76, 105, 2176, 2281, 6738, 9019, 15757, 24776, 40533, 65309, 171151, 236460]; [n le 20 select I[n] else 2252*Self(n-10)-Self(n-20): n in [1..40]]; // Vincenzo Librandi, Dec 13 2013 CROSSREFS Cf. A041208, A010180. Sequence in context: A075193 A042433 A024319 * A293420 A041739 A042593 Adjacent sequences:  A041206 A041207 A041208 * A041210 A041211 A041212 KEYWORD nonn,frac,easy AUTHOR EXTENSIONS More terms from Colin Barker, Nov 14 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 17 18:21 EST 2019. Contains 319250 sequences. (Running on oeis4.)