login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A135005
Decimal expansion of 5/e.
2
1, 8, 3, 9, 3, 9, 7, 2, 0, 5, 8, 5, 7, 2, 1, 1, 6, 0, 7, 9, 7, 7, 6, 1, 8, 8, 5, 0, 8, 0, 7, 3, 0, 4, 3, 3, 7, 2, 2, 9, 0, 5, 5, 6, 5, 5, 1, 5, 8, 8, 3, 9, 1, 7, 2, 5, 3, 9, 1, 8, 4, 0, 0, 8, 4, 8, 7, 3, 0, 7, 4, 7, 8, 7, 2, 4, 4, 9, 9, 0, 1, 6, 7, 8, 5, 7, 3, 6, 3, 7, 1, 7, 2, 9, 5, 9, 8, 2, 1, 8, 7, 3, 3, 1, 3, 6, 6, 2, 6
OFFSET
1,2
COMMENTS
The fraction of substituents which become isolated in a simple polymer model is 1/10 this number, see Flory 1939 (and 1936). - Charles R Greathouse IV, Nov 30 2012
LINKS
Paul J. Flory, Intramolecular reaction between neighboring substituents of vinyl polymers, Journal of the American Chemical Society 61:6 (1939), pp. 1518-1521.
Paul J. Flory, Molecular size distribution in linear condensation polymers, Journal of the American Chemical Society 58:10 (1936), pp. 1877-1885.
Ovidiu Furdui, From Lalescu's sequence to a Gamma function limit, Gazette of the Australian Mathematical Society, Vol. 35, No. 5 (2008), pp. 339-344.
FORMULA
Equals 5/A001113 and 5*A068985. - Michel Marcus, Sep 17 2016
1/(2*e) = Integral_{x=1..oo} e^(-x^2) * x dx. - Amiram Eldar, Aug 03 2020
1/(2*e) = lim_{n->oo} n * ((n+1)!^(1/(n+1)) - n!^(1/n) - 1/e) (Furdui, 2008). - Amiram Eldar, Apr 20 2023
EXAMPLE
5/e = 1.839397205857211607977618850807304337229...
1/(2*e) = 0.1839397205857211607977618850807304337229... (see Greathouse's comment).
MATHEMATICA
RealDigits[5/E , 10, 50][[1]] (* G. C. Greubel, Sep 16 2016 *)
PROG
(PARI) 5/exp(1) \\ Michel Marcus, Sep 17 2016
CROSSREFS
Sequence in context: A170937 A058265 A357528 * A090734 A200614 A011467
KEYWORD
cons,nonn
AUTHOR
Omar E. Pol, Nov 15 2007
STATUS
approved