login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of 5/e.
2

%I #25 Apr 20 2023 04:22:28

%S 1,8,3,9,3,9,7,2,0,5,8,5,7,2,1,1,6,0,7,9,7,7,6,1,8,8,5,0,8,0,7,3,0,4,

%T 3,3,7,2,2,9,0,5,5,6,5,5,1,5,8,8,3,9,1,7,2,5,3,9,1,8,4,0,0,8,4,8,7,3,

%U 0,7,4,7,8,7,2,4,4,9,9,0,1,6,7,8,5,7,3,6,3,7,1,7,2,9,5,9,8,2,1,8,7,3,3,1,3,6,6,2,6

%N Decimal expansion of 5/e.

%C The fraction of substituents which become isolated in a simple polymer model is 1/10 this number, see Flory 1939 (and 1936). - _Charles R Greathouse IV_, Nov 30 2012

%H G. C. Greubel, <a href="/A135005/b135005.txt">Table of n, a(n) for n = 1..2000</a>

%H Paul J. Flory, <a href="http://dx.doi.org/10.1021/ja01875a053">Intramolecular reaction between neighboring substituents of vinyl polymers</a>, Journal of the American Chemical Society 61:6 (1939), pp. 1518-1521.

%H Paul J. Flory, <a href="http://dx.doi.org/10.1021/ja01301a016">Molecular size distribution in linear condensation polymers</a>, Journal of the American Chemical Society 58:10 (1936), pp. 1877-1885.

%H Ovidiu Furdui, <a href="https://austms.org.au/wp-content/uploads/Gazette/2008/Nov08/Gazette35(5)Web.pdf#page=49">From Lalescu's sequence to a Gamma function limit</a>, Gazette of the Australian Mathematical Society, Vol. 35, No. 5 (2008), pp. 339-344.

%F Equals 5/A001113 and 5*A068985. - _Michel Marcus_, Sep 17 2016

%F 1/(2*e) = Integral_{x=1..oo} e^(-x^2) * x dx. - _Amiram Eldar_, Aug 03 2020

%F 1/(2*e) = lim_{n->oo} n * ((n+1)!^(1/(n+1)) - n!^(1/n) - 1/e) (Furdui, 2008). - _Amiram Eldar_, Apr 20 2023

%e 5/e = 1.839397205857211607977618850807304337229...

%e 1/(2*e) = 0.1839397205857211607977618850807304337229... (see Greathouse's comment).

%t RealDigits[5/E , 10, 50][[1]] (* _G. C. Greubel_, Sep 16 2016 *)

%o (PARI) 5/exp(1) \\ _Michel Marcus_, Sep 17 2016

%Y Cf. A001113, A068985.

%K cons,nonn

%O 1,2

%A _Omar E. Pol_, Nov 15 2007