login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A200683 Decimal expansion of the lesser of two values of x satisfying 4*x^2 = tan(x) and 0 < x < Pi/2. 3
2, 5, 5, 5, 8, 9, 9, 6, 6, 7, 4, 6, 5, 6, 7, 8, 0, 3, 4, 7, 1, 4, 1, 2, 6, 3, 3, 5, 3, 9, 8, 1, 4, 6, 8, 1, 1, 2, 6, 6, 8, 4, 4, 8, 9, 0, 5, 1, 8, 6, 6, 1, 0, 0, 4, 3, 1, 2, 6, 8, 2, 7, 5, 1, 1, 2, 5, 9, 0, 7, 0, 3, 1, 5, 8, 8, 6, 2, 4, 3, 2, 0, 4, 1, 9, 7, 0, 8, 5, 0, 2, 3, 4, 2, 3, 5, 1, 7, 5 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

See A200614 for a guide to related sequences. The Mathematica program includes a graph.

LINKS

Table of n, a(n) for n=0..98.

EXAMPLE

lesser:  0.2555899667465678034714126335398146...

greater: 1.4529161609165145187427486875904483...

MATHEMATICA

a = 4; c = 0;

f[x_] := a*x^2 - c; g[x_] := Tan[x]

Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}]

r = x /. FindRoot[f[x] == g[x], {x, .2, .3}, WorkingPrecision -> 110]

RealDigits[r](* A200683 *)

r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]

RealDigits[r](* A200684 *)

CROSSREFS

Cf. A200614.

Sequence in context: A186501 A235452 A171438 * A286541 A078576 A256302

Adjacent sequences:  A200680 A200681 A200682 * A200684 A200685 A200686

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Nov 20 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 29 09:29 EDT 2021. Contains 346344 sequences. (Running on oeis4.)