login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A200680 Decimal expansion of the greater of two values of x satisfying 2*x^2 = tan(x) and 0 < x < Pi/2. 3
1, 2, 7, 0, 3, 4, 2, 6, 4, 7, 7, 9, 9, 5, 8, 2, 7, 1, 1, 0, 6, 3, 9, 9, 0, 3, 3, 5, 0, 3, 2, 0, 2, 1, 1, 2, 5, 1, 4, 7, 6, 9, 7, 3, 1, 0, 4, 6, 2, 8, 0, 7, 5, 6, 5, 6, 7, 6, 2, 5, 4, 0, 1, 2, 7, 6, 5, 4, 9, 0, 4, 4, 1, 1, 5, 6, 5, 0, 3, 4, 9, 6, 4, 1, 6, 9, 7, 1, 2, 3, 6, 3, 5, 9, 4, 4, 1, 3, 5 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

See A200614 for a guide to related sequences. The Mathematica program includes a graph.

LINKS

Table of n, a(n) for n=1..99.

EXAMPLE

lesser:  0.55970415227308065061037721283588022...

greater: 1.27034264779958271106399033503202112...

MATHEMATICA

a = 2; c = 0;

f[x_] := a*x^2 - c; g[x_] := Tan[x]

Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}]

r = x /. FindRoot[f[x] == g[x], {x, .5, .6}, WorkingPrecision -> 110]

RealDigits[r] (* A200679 *)

r = x /. FindRoot[f[x] == g[x], {x, 1.2, 1.3}, WorkingPrecision -> 110]

RealDigits[r] (* A200680 *)

CROSSREFS

Cf. A200614.

Sequence in context: A021041 A245975 A188737 * A260129 A341318 A332324

Adjacent sequences:  A200677 A200678 A200679 * A200681 A200682 A200683

KEYWORD

nonn,cons,changed

AUTHOR

Clark Kimberling, Nov 20 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 21 10:28 EDT 2021. Contains 343149 sequences. (Running on oeis4.)