login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A200684 Decimal expansion of the greater of two values of x satisfying 4*x^2=tan(x) and 0<x<pi/2. 3
1, 4, 5, 2, 9, 1, 6, 1, 6, 0, 9, 1, 6, 5, 1, 4, 5, 1, 8, 7, 4, 2, 7, 4, 8, 6, 8, 7, 5, 9, 0, 4, 4, 8, 3, 2, 3, 2, 4, 0, 2, 2, 5, 9, 9, 9, 0, 3, 2, 5, 0, 9, 5, 1, 4, 9, 7, 6, 4, 6, 3, 1, 3, 0, 5, 3, 3, 6, 2, 8, 3, 7, 1, 6, 6, 5, 5, 6, 8, 6, 0, 7, 3, 1, 9, 9, 2, 4, 8, 3, 1, 1, 1, 7, 1, 5, 3, 1, 2 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

See A200614 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

Table of n, a(n) for n=1..99.

EXAMPLE

lesser:  0.25558996674656780347141263353981468112668...

greater: 1.45291616091651451874274868759044832324022...

MATHEMATICA

a = 4; c = 0;

f[x_] := a*x^2 - c; g[x_] := Tan[x]

Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}]

r = x /. FindRoot[f[x] == g[x], {x, .2, .3}, WorkingPrecision -> 110]

RealDigits[r](* A200683 *)

r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]

RealDigits[r](* A200684 *)

CROSSREFS

Cf. A200614.

Sequence in context: A111624 A019815 A281143 * A307385 A046572 A046574

Adjacent sequences:  A200681 A200682 A200683 * A200685 A200686 A200687

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Nov 20 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 27 03:30 EST 2020. Contains 332299 sequences. (Running on oeis4.)