login
A307385
Decimal expansion of the constant S_2* = Sum_{j>=1} prime((2*j + 1) - 1)!/prime((2*j + 2) - 1)!.
0
0, 4, 5, 2, 9, 4, 3, 4, 8, 8, 5, 0
OFFSET
0,2
COMMENTS
The constant S_2* is related to the prime gaps, since twin primes produce the largest terms of the sum compared with neighboring terms.
On Apr 06 2019, the first 4200000000 prime numbers were used in order to calculate S_1* and S_2* and using Rosser's theorem we get: 0.04529434885014 < S_1* + S_2* < 0.04529434885035.
FORMULA
S_2* = Sum_{j>=1} prime((2*j + 1) - 1)!/prime((2*j + 2) - 1)! = Sum_{j>=1} 1/(Product{k=prime(2*j + 1), prime((2*j + 2) - 1)} k) = 1/(5*6) + 1/(11*12) + 1/(17*18) + 1/(23*24*25*26*27*28) +...
EXAMPLE
S_2* = 0.045294348850...
CROSSREFS
Cf. A000040, A306658 (S_1) A306700 (S_2), A306744 (S_1 + S_2), A307383 (S_1* + S_2*), A307384 (S_1*).
Sequence in context: A281143 A200684 A345210 * A354700 A046572 A046574
KEYWORD
cons,nonn,more
AUTHOR
STATUS
approved