login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A135649 Seven-person pyramidal game with four payoff matrices: expansion of the 49by49 matrix characteristic polynomial: p(x)=(1 + x^6 - x^7)^3(1 + 2 x^6 - x^7)^2(1 + 3 x^6 - x^7)(23 + 49 x^6 -x^7) f(x)=1/(x^49*p(1/x)) Weights: 7->{1,1,2,3}. 0
-1, -59, -2951, -144881, -7100318, -347919854, -17048087778, -835356351147, -40932461369999, -2005690607714190, -98278839782943427, -4815663149532534269, -235967494335111673276, -11562407222812624781054, -566557953937031952348408, -27761339743856012706314735 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Ratio approaches:49.00000000166169

Follower matrices:

Ma={{0, 1, 0, 0, 0, 0, 0},

{0, 0, 1, 0, 0, 0, 0},

{0, 0, 0, 1, 0, 0, 0},

{0, 0, 0, 0, 1, 0, 0},

{0, 0, 0, 0, 0, 1, 0},

{0, 0, 0, 0, 0, 0, 1},

{1, 0, 0, 0, 0, 0, a}}; a={1,2,3};

M_Leader={{0, 1, 0, 0, 0, 0, 0},

{0, 0, 1, 0, 0, 0, 0},

{0, 0, 0, 1, 0, 0, 0},

{0, 0, 0, 0, 1, 0, 0},

{0, 0, 0, 0, 0, 1, 0},

{0, 0, 0, 0, 0, 0, 1},

{23, 0, 0, 0, 0, 0, 49}}

I missed this game in my first round of analysis.

LINKS

Table of n, a(n) for n=1..16.

FORMULA

(x)=(1 + x^6 - x^7)^3(1 + 2 x^6 - x^7)^2(1 + 3 x^6 - x^7)(23 + 49 x^6 -x^7) f(x)=1/(x^49*p(1/x)) a(n) =expansion(f(x)).

MATHEMATICA

f[x_] = Product[CharacteristicPolynomial[{{0, 1, 0, 0, 0, 0, 0}, {0, 0, 1, 0, 0, 0, 0}, {0, 0, 0, 1, 0, 0, 0}, {0, 0, 0, 0, 1, 0, 0}, {0, 0, 0, 0, 0, 1, 0}, {0, 0, 0, 0, 0, 0, 1}, {1, 0, 0, 0, 0, 0, a}}, x]^(4 - a), {a, 1, 3}]*CharacteristicPolynomial[{{0, 1, 0, 0, 0, 0, 0}, {0, 0, 1, 0, 0, 0, 0}, {0, 0, 0, 1, 0, 0, 0}, {0, 0, 0, 0, 1, 0, 0}, {0, 0, 0, 0, 0, 1, 0}, {0, 0, 0, 0, 0, 0, 1}, {23, 0, 0, 0, 0, 0, 49}}, x]; g[x_] = Expand[x^49*f[1/x]]; a = Table[ SeriesCoefficient[Series[1/g[x], {x, 0, 30}], n], {n, 0, 30}]

CROSSREFS

Sequence in context: A017722 A263508 A119886 * A278367 A198509 A258269

Adjacent sequences:  A135646 A135647 A135648 * A135650 A135651 A135652

KEYWORD

uned,sign

AUTHOR

Roger L. Bagula, Jan 31 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 17:01 EST 2021. Contains 349596 sequences. (Running on oeis4.)