login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A375893
a(n) = (64)^n*cos (nA - nB), where A, B, C are, respectively, the angles opposite sides BC, CA, AB in a triangle ABC having sidelengths |BC| = 2, |CA| = 3, |AB| = 4; ABC is the smallest integer-sided scalene triangle.
1
1, 61, 3346, 158356, 5614216, 36308176, -18566231264, -2413798503104, -218436134121344, -16762289694089984, -1150284937317953024, -71676423765797694464, -4032956596172983138304, -198434072988396586348544, -7689966686659844600029184
OFFSET
0,2
COMMENTS
If a prime p divides a term, then the indices n such that p divides a(n) comprise an arithmetic sequence; see the Renault paper in References. For a guide to related sequences, see A375880.
FORMULA
a(n) = (64)^n*cos (nA - nB), where A, B, C are, respectively, the angles opposite sides BC, CA, AB in a triangle ABC having sidelengths |BC| = 2, |CA| = 3, |AB| = 4.
a(n) = 122 a(n-1) - 4096 a(n-2), where a(0) = 1, a(1) = 61.
From Stefano Spezia, Sep 23 2024: (Start)
G.f.: (1 - 61*x)/(1 - 122*x+ 4096*x^2).
E.g.f.: exp(61*x)*cos(5*sqrt(15)*x). (End)
MATHEMATICA
(* Program 1 *)
A[a_, b_, c_] := ArcCos[(b^2 + c^2 - a^2)/(2 b c)];
{a, b, c} = {2, 3, 4};
Table[TrigExpand[(64)^n Cos[n (A[a, b, c] - A[b, c, a])]], {n, 0, 18}]
(* Program 2 *)
LinearRecurrence[{122, -4096}, {1, 61}, 30]
CROSSREFS
Cf. A375880.
Sequence in context: A191092 A234028 A135647 * A269025 A207231 A207224
KEYWORD
sign,easy
AUTHOR
Clark Kimberling, Sep 22 2024
STATUS
approved