login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A375896
a(n) = (64)^n*sin (nA - nB)/(5 sqrt(15)), where A, B, C are, respectively, the angles opposite sides BC, CA, AB in a triangle ABC having sidelengths |BC| = 2, |CA| = 3, |AB| = 4; ABC is the smallest integer-sided scalene triangle.
1
0, -1, -122, -10788, -816424, -55416080, -3416689056, -189851801152, -9167161367168, -340760709275904, -4024113571740160, 904814009441803264, 126870078341747693568, 11772031375019592445952, 916527986864591725551616, 63598173885399939858677760
OFFSET
0,3
COMMENTS
If a prime p divides a term, then the indices n such that p divides a(n) comprise an arithmetic sequence; see the Renault paper in References. For a guide to related sequences, see A375880.
FORMULA
a(n) = (64)^n*cos (nA - nB)/(5 sqrt(15)), where A, B, C are, respectively, the angles opposite sides BC, CA, AB in a triangle ABC having sidelengths |BC| = 2, |CA| = 3, |AB| = 4.
a(n) = 122 a(n-1) - 4096 a(n-2), where a(0) = 0, a(1) = -1.
From Stefano Spezia, Sep 25 2024: (Start)
G.f.: -x/(1 - 122*x + 4096*x^2).
E.g.f.: -exp(61*x)*sin(5*sqrt(105)*x)/(5*sqrt(5)). (End)
MATHEMATICA
(* Program 1 *)
A[a_, b_, c_] := ArcSin[Sqrt[1 - ((b^2 + c^2 - a^2)/(2 b c))^2]];
{a, b, c} = {2, 3, 4};
Table[TrigExpand[(64)^n Sin[n (A[a, b, c] - A[b, c, a])]/(5 Sqrt[15])], {n, 0, 18}]
(* Program 2 *)
LinearRecurrence[{122, -4096}, {0, -1}, 30]
CROSSREFS
Cf. A375880.
Sequence in context: A281609 A233071 A316526 * A324453 A275502 A275399
KEYWORD
sign,easy
AUTHOR
Clark Kimberling, Sep 25 2024
STATUS
approved