login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A375897
E.g.f. satisfies A(x) = 1 / (2 - exp(x * A(x)^(1/2)))^2.
2
1, 2, 12, 122, 1780, 34082, 810740, 23093562, 767175972, 29140904402, 1246366394548, 59292772664666, 3106206974812292, 177715679350850370, 11026719500616041076, 737552919428497318394, 52907911316906095281508, 4051998061642112552244722
OFFSET
0,2
FORMULA
E.g.f.: B(x)^2, where B(x) is the e.g.f. of A052894.
E.g.f.: A(x) = ( (1/x) * Series_Reversion(x * (2 - exp(x))) )^2.
a(n) = (2/(n+2)!) * Sum_{k=0..n} (n+k+1)! * Stirling2(n,k).
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace((serreverse(x*(2-exp(x)))/x)^2))
(PARI) a(n) = 2*sum(k=0, n, (n+k+1)!*stirling(n, k, 2))/(n+2)!;
CROSSREFS
Cf. A005649.
Sequence in context: A051782 A048173 A058349 * A013469 A372178 A246738
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 01 2024
STATUS
approved