login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A051782
Apply the "Stirling-Bernoulli transform" to Catalan numbers.
2
1, 0, 2, -12, 122, -1620, 26882, -536172, 12506762, -334261380, 10075002962, -338180323932, 12512502202202, -505992958647540, 22204726014875042, -1050993549782729292, 53373431773793542442, -2894886293042487680100, 167021024758368026331122
OFFSET
0,3
COMMENTS
The "Stirling-Bernoulli transform" maps a sequence b_0, b_1, b_2, ... to a sequence c_0, c_1, c_2, ..., where if B has o.g.f. B(x), c has e.g.f. exp(x)*B(1-exp(x)). More explicitly, c_n = Sum_{m=0..n} (-1)^m*m!*Stirling2(n+1,m+1)*b_m.
LINKS
FORMULA
a(n) = Sum_{k = 0..n} A163626(n,k)*A000108(k). - Philippe Deléham, May 25 2015
MAPLE
a:= n-> add((-1)^k *k! *Stirling2(n+1, k+1)*binomial(2*k, k)/
(k+1), k=0..n):
seq(a(n), n=0..20); # Alois P. Heinz, May 17 2013
MATHEMATICA
a[n_] := Sum[(-1)^k k! StirlingS2[n+1, k+1] CatalanNumber[k], {k, 0, n}];
Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Apr 06 2016 *)
CROSSREFS
Sequence in context: A165300 A028359 A034524 * A048173 A058349 A375897
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Dec 09 1999
STATUS
approved