OFFSET
1,2
COMMENTS
Conjecture. (1) If n > 1, and a(n) begins and ends with 1, then a(n+1) is obtained by deleting the initial 1 of a(n); (2) if a(n) begins with 1 and ends with 2 then a(n+1) is obtained by adding a final 1 to a(n); (3) if a(n) begins with 2 and ends with 1 then a(n+1) is obtained by adding a final 2 to a(n); (4) if a(n) begins and ends with 2 then a(n+1) is obtained by adding an initial 1 to a(n). This has been confirmed through a(140), which has 71 digits (and should be fairly easy to prove). - John W. Layman, Sep 22 2009
FORMULA
a(n+1) = (1/24)*((a(n) + 10^floor(1 + log_10(a(n))))*(((n-2) mod 4) + ((n-1) mod 4) + 7*(n mod 4) - 5*((n+1) mod 4)) + (10*a(n)+1)*(((n-2) mod 4) + 7*((n-1) mod 4) - 5*(n mod 4) + ((n+1) mod 4)) + (a(n) - 10^floor(log_10(a(n))))*(7*((n-2) mod 4) - 5*((n-1) mod 4) + (n mod 4) + ((n+1) mod 4)) + (10*a(n) + 2)*(-5*((n-2) mod 4) + ((n-1) mod 4) + (n mod 4) + 7*((n+1) mod 4))), with n >= 3 and a(1)=1, a(2)=2. - Paolo P. Lava, Oct 02 2009
EXAMPLE
Starting from 1,2 the next number must be 12 because after 1,2 we shall continue with a 1. But 1 is already in the sequence so we need to add a 2 -> 12. And so on.
MAPLE
P:=proc(i) local a, n; a:=2; print(1); print(2); for n from 3 by 1 to i do a:=1/24*((a+10^floor(1+evalf(log10(a), 100)))*(((n-2) mod 4)+((n-1) mod 4)+7*(n mod 4)-5*((n+1) mod 4))+(10*a+1)*(((n-2) mod 4)+7*((n-1) mod 4)-5*(n mod 4)+((n+1) mod 4))+(a-10^floor(evalf(log10(a), 100)))*(7*((n-2) mod 4)-5*((n-1) mod 4)+(n mod 4)+((n+1) mod 4))+(10*a+2)*(-5*((n-2) mod 4)+((n-1) mod 4)+(n mod 4)+7*((n+1) mod 4))); print(a); od; end: P(200); # Paolo P. Lava, Oct 02 2009
CROSSREFS
KEYWORD
easy,base,nonn
AUTHOR
Paolo P. Lava and Giorgio Balzarotti, Sep 14 2009
EXTENSIONS
Terms a(21) onward from John W. Layman, Sep 22 2009
Edited by N. J. A. Sloane, Oct 06 2009
STATUS
approved