
REFERENCES

D. R. HeathBrown, Consecutive almostprimes, J. Indian Math. Soc. (N.S.) 52 (1987), pp. 3949 (1988).
D. R. HeathBrown, A note on the paper: "Consecutive almostprimes", J. Indian Math. Soc. (N.S.) 66 no. 14 (1999), pp. 203205.
Adolf J. Hildebrand, Multiplicative properties of consecutive integers; pp. 103118 in Analytic number theory, ed. by Y. Motohashi.


EXAMPLE

{1,2} is special since 21 = gcd(2, 1). tau({1,2}) = lcm({21}) = 1, so a(2) = 1.
{2,3,4} is special since 32 = gcd(3,2), 43 = gcd(4,3), and 42 = gcd(4,2). tau({2,3,4}) = lcm({32,43,42}) = 2, so a(3) = 2.
tau({1,2}) = 1.
tau({2,3,4}) = 2.
tau({8,9,10,12}) = 12.
tau({40,45,48,50,60}) = 120.
tau({210, 216, 220, 224, 225, 240}) = 5040.
tau({49920, 49950, 49952, 49959, 49960, 49968, 49980}) = 131040.
