

A221281


Numbers n such that lambda(n) = lambda(n+1) = lambda(n+2), where lambda(n) = A008836(n) is the Liouville function.


3



11, 14, 17, 18, 24, 27, 28, 29, 30, 33, 34, 38, 41, 42, 43, 54, 55, 56, 66, 70, 71, 78, 84, 85, 86, 93, 94, 97, 101, 107, 108, 112, 121, 132, 133, 134, 137, 140, 141, 142, 143, 144, 147, 158, 159, 162, 163, 170, 171, 172, 173, 174, 179, 180, 183, 190, 191, 201, 202, 203, 204
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Hildebrand proved that this sequence is infinite. More generally, he showed that the eight values (1, 1, 1), (1, 1, 1), ..., (1, 1, 1) each appear infinitely often as consecutive values of the Liouville function.


LINKS

Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Adolf Hildebrand, On consecutive values of the Liouville function, Enseign. Math. (2) 32 (1986), no. 34, pp. 219226.


MATHEMATICA

SequencePosition[LiouvilleLambda[Range[250]], {x_, x_, x_}][[All, 1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 16 2021 *)


PROG

(PARI) is(n)=my(k=(1)^bigomega(n)); k==(1)^bigomega(n+1) && k==(1)^bigomega(n+2)


CROSSREFS

Subsequence of A221280. Cf. A008836, A221282.
Sequence in context: A038630 A239935 A219179 * A025058 A025060 A093669
Adjacent sequences: A221278 A221279 A221280 * A221282 A221283 A221284


KEYWORD

nonn,changed


AUTHOR

Charles R Greathouse IV, Jan 09 2013


STATUS

approved



