login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A025060
Numbers of the form i*j + j*k + k*i, where 1 <= i < j < k.
7
11, 14, 17, 19, 20, 23, 26, 27, 29, 31, 32, 34, 35, 36, 38, 39, 41, 43, 44, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 100, 101, 103, 104, 106, 107, 108, 109
OFFSET
1,1
COMMENTS
A025058 without duplicates.
Non-Idoneal Numbers. [Artur Jasinski, Oct 27 2008]
Conjecture: If i, j and k are allowed to be negative, but not zero, and are still distinct, then the sequence is all the integers. - Jon Perry, Apr 21 2013
LINKS
MAPLE
N:= 200: # to get all terms <= N
sort(convert({seq(seq(seq(i*j + j*k + i*k, i=1..min(j-1, (N-j*k)/(j+k))), j=2..min(k-1, (N-k)/(1+k))), k=3..(N-2)/3)}, list)); # Robert Israel, Sep 06 2016
MATHEMATICA
aa = {}; Do[Do[Do[k = a b + b c + c a; AppendTo[aa, a b + b c + c a], {a, 1, b - 1}], {b, 2, c - 1}], {c, 3, 10}]; Union[aa] (* Artur Jasinski, Oct 27 2008 *)
PROG
(Python)
def aupto(N):
aset = set()
for i in range(1, N-1):
for j in range(i+1, N//i + 1):
p, s = i*j, i+j
for k in range(j+1, (N-p)//s + 1):
aset.add(p + s*k)
return sorted(aset)
print(aupto(109)) # Michael S. Branicky, Nov 14 2021
CROSSREFS
Cf. A000926 (complement), A025058, A093669.
Sequence in context: A219179 A221281 A025058 * A093669 A084805 A159020
KEYWORD
nonn
STATUS
approved