login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A246738
Number of length 1+4 0..n arrays with no pair in any consecutive five terms totalling exactly n.
1
2, 12, 124, 424, 1566, 3876, 9368, 18768, 36250, 63100, 106452, 168312, 259574, 383124, 554416, 777376, 1072818, 1445868, 1923500, 2512200, 3245902, 4132612, 5214024, 6499824, 8040266, 9846876, 11979268, 14450968, 17331750, 20637300
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 3*a(n-1) - 8*a(n-3) + 6*a(n-4) + 6*a(n-5) - 8*a(n-6) + 3*a(n-8) - a(n-9).
Conjectures from Colin Barker, Nov 06 2018: (Start)
G.f.: 2*x*(1 + 3*x + 44*x^2 + 34*x^3 + 189*x^4 + 43*x^5 + 166*x^6) / ((1 - x)^6*(1 + x)^3).
a(n) = 10*n - 20*n^2 + 15*n^3 - 5*n^4 + n^5 for n even.
a(n) = 16 - 15*n - 10*n^2 + 15*n^3 - 5*n^4 + n^5 for n odd.
(End)
EXAMPLE
Some solutions for n=4:
..1....1....2....2....2....0....4....4....3....3....3....0....3....4....1....2
..0....0....0....3....1....3....1....4....3....4....3....3....3....3....4....3
..2....2....1....3....0....0....2....2....4....2....2....3....0....3....4....4
..0....1....0....0....0....3....1....1....4....4....3....0....0....3....2....3
..1....0....0....3....0....0....1....1....3....3....4....3....3....4....1....4
CROSSREFS
Row 1 of A246737.
Sequence in context: A375897 A013469 A372178 * A039933 A364397 A214223
KEYWORD
nonn
AUTHOR
R. H. Hardin, Sep 02 2014
STATUS
approved