login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A246739
Number of length 2+4 0..n arrays with no pair in any consecutive five terms totalling exactly n.
1
2, 16, 260, 1096, 5430, 15960, 47432, 109552, 246890, 483520, 920652, 1606776, 2735390, 4392136, 6907280, 10419040, 15447762, 22202352, 31455380, 43507240, 59453702, 79710136, 105775320, 138205776, 178991930, 228860320, 290390492
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 3*a(n-1) + a(n-2) - 11*a(n-3) + 6*a(n-4) + 14*a(n-5) - 14*a(n-6) - 6*a(n-7) + 11*a(n-8) - a(n-9) - 3*a(n-10) + a(n-11).
Conjectures from Colin Barker, Nov 06 2018: (Start)
G.f.: 2*x*(1 + 5*x + 105*x^2 + 161*x^3 + 1023*x^4 + 655*x^5 + 2211*x^6 + 523*x^7 + 1076*x^8) / ((1 - x)^7*(1 + x)^4).
a(n) = -58*n + 111*n^2 - 87*n^3 + 36*n^4 - 8*n^5 + n^6 for n even.
a(n) = -70 + 80*n + 34*n^2 - 71*n^3 + 36*n^4 - 8*n^5 + n^6 for n odd.
(End)
EXAMPLE
Some solutions for n=4:
..4....1....4....2....4....2....1....4....0....2....1....2....0....4....2....2
..4....0....3....0....4....1....1....2....1....1....1....0....2....1....1....3
..3....2....3....0....4....0....1....4....1....1....0....1....1....4....0....3
..2....0....3....3....4....0....1....3....2....1....2....0....1....4....0....3
..3....0....3....0....2....0....1....3....1....4....0....1....1....4....0....4
..3....3....2....2....1....1....4....3....0....4....1....2....1....2....0....2
CROSSREFS
Row 2 of A246737.
Sequence in context: A114039 A090305 A358145 * A304317 A351918 A326272
KEYWORD
nonn
AUTHOR
R. H. Hardin, Sep 02 2014
STATUS
approved