login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (64)^n*sin (nA - nB)/(5 sqrt(15)), where A, B, C are, respectively, the angles opposite sides BC, CA, AB in a triangle ABC having sidelengths |BC| = 2, |CA| = 3, |AB| = 4; ABC is the smallest integer-sided scalene triangle.
1

%I #14 Sep 28 2024 07:38:48

%S 0,-1,-122,-10788,-816424,-55416080,-3416689056,-189851801152,

%T -9167161367168,-340760709275904,-4024113571740160,904814009441803264,

%U 126870078341747693568,11772031375019592445952,916527986864591725551616,63598173885399939858677760

%N a(n) = (64)^n*sin (nA - nB)/(5 sqrt(15)), where A, B, C are, respectively, the angles opposite sides BC, CA, AB in a triangle ABC having sidelengths |BC| = 2, |CA| = 3, |AB| = 4; ABC is the smallest integer-sided scalene triangle.

%C If a prime p divides a term, then the indices n such that p divides a(n) comprise an arithmetic sequence; see the Renault paper in References. For a guide to related sequences, see A375880.

%H Marc Renault, <a href="https://www.jstor.org/stable/10.4169/math.mag.86.5.372">The Period, Rank, and Order of the (a,b)-Fibonacci Sequence mod m</a>, Math. Mag. 86 (2013) pp. 372-380.

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (122,-4096).

%F a(n) = (64)^n*cos (nA - nB)/(5 sqrt(15)), where A, B, C are, respectively, the angles opposite sides BC, CA, AB in a triangle ABC having sidelengths |BC| = 2, |CA| = 3, |AB| = 4.

%F a(n) = 122 a(n-1) - 4096 a(n-2), where a(0) = 0, a(1) = -1.

%F From _Stefano Spezia_, Sep 25 2024: (Start)

%F G.f.: -x/(1 - 122*x + 4096*x^2).

%F E.g.f.: -exp(61*x)*sin(5*sqrt(105)*x)/(5*sqrt(5)). (End)

%t (* Program 1 *)

%t A[a_, b_, c_] := ArcSin[Sqrt[1 - ((b^2 + c^2 - a^2)/(2 b c))^2]];

%t {a, b, c} = {2, 3, 4};

%t Table[TrigExpand[(64)^n Sin[n (A[a, b, c] - A[b, c, a])]/(5 Sqrt[15])], {n, 0, 18}]

%t (* Program 2 *)

%t LinearRecurrence[{122, -4096}, {0, -1}, 30]

%Y Cf. A375880.

%K sign,easy

%O 0,3

%A _Clark Kimberling_, Sep 25 2024