This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A269025 a(n) = Sum_{k = 0..n} 60^k. 5

%I

%S 1,61,3661,219661,13179661,790779661,47446779661,2846806779661,

%T 170808406779661,10248504406779661,614910264406779661,

%U 36894615864406779661,2213676951864406779661,132820617111864406779661,7969237026711864406779661,478154221602711864406779661

%N a(n) = Sum_{k = 0..n} 60^k.

%C Partial sums of powers of 60 (A159991).

%C Converges in a 10-adic sense to ...762711864406779661.

%C More generally, the ordinary generating function for the Sum_{k = 0..n} m^k is 1/((1 - m*x)*(1 - x)). Also, Sum_{k = 0..n} m^k = (m^(n + 1) - 1)/(m - 1).

%H <a href="/index/Par#partial">Index entries related to partial sums</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (61,-60)

%F G.f.: 1/((1 - 60*x)*(1 - x)).

%F a(n) = (60^(n + 1) - 1)/59 = 60^n + floor(60^n/59).

%F a(n+1) = 60*a(n) + 1, a(0)=1.

%F a(n) = Sum_{k = 0..n} A159991(k).

%F Sum_(n>=0} 1/a(n) = 1.016671221665660580331...

%t Table[Sum[60^k, {k, 0, n}], {n, 0, 15}]

%t Table[(60^(n + 1) - 1)/59, {n, 0, 15}]

%t LinearRecurrence[{61, -60}, {1, 61}, 15]

%o (PARI) a(n)=60^n + 60^n\59 \\ _Charles R Greathouse IV_, Jul 26 2016

%Y Cf. A159991.

%Y Cf. similar sequences of the form (k^n-1)/(k-1): A000225 (k=2), A003462 (k=3), A002450 (k=4), A003463 (k=5), A003464 (k=6), A023000 (k=7), A023001 (k=8), A002452 (k=9), A002275 (k=10), A016123 (k=11), A016125 (k=12), A091030 (k=13), A135519 (k=14), A135518 (k=15), A131865 (k=16), A091045 (k=17), A218721 (k=18), A218722 (k=19), A064108 (k=20), A218724-A218734 (k=21..31), A132469, A218737-A218753 (k from 34 to 50), this sequence (k=60), A133853 (k=64), A094028 (k=100), A218723 (k=256), A261544 (k=1000).

%K nonn,easy

%O 0,2

%A _Ilya Gutkovskiy_, Feb 18 2016

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 15 20:47 EST 2019. Contains 319184 sequences. (Running on oeis4.)