Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #63 Mar 25 2023 08:20:09
%S 1,101,10101,1010101,101010101,10101010101,1010101010101,
%T 101010101010101,10101010101010101,1010101010101010101,
%U 101010101010101010101,10101010101010101010101,1010101010101010101010101,101010101010101010101010101,10101010101010101010101010101
%N Expansion of 1/((1-x)*(1-100*x)).
%C Regarded as binary numbers and converted to decimal, these become 1,5,21,85,... the partial sums of 4^n (see A002450).
%C Partial sums of 100^n.
%C Odd terms of A056830. - _Alexandre Wajnberg_, May 31 2005
%C 101 is the only term that is prime, since (100^k-1)/99 = (10^k+1)/11 * (10^k-1)/9. When k is odd and not 1, (10^k+1)/11 is an integer > 1 and thus (100^k-1)/99 is nonprime. When k is even and greater than 2, (100^k-1)/99 has the prime factor 101 and is nonprime. - _Felix Fröhlich_, Oct 17 2015
%C Previous comment is the answer to the problem A1 proposed during the 50th Putnam Competition in 1989 (link). - _Bernard Schott_, Mar 24 2023
%D Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 60.
%D S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
%H Robert Price, <a href="/A094028/b094028.txt">Table of n, a(n) for n = 0..999</a>
%H Kiran S. Kedlaya, <a href="http://kskedlaya.org/putnam-archive/1989.pdf">The 50th William Lowell Putnam Mathematical Competition</a>, Problem A1, Dec 02 1989.
%H J. V. Leyendekkers and A.G. Shannon, <a href="http://www.nntdm.net/papers/nntdm-17/NNTDM-17-2-47-51.pdf">Modular Rings and the Integer 3</a>, Notes on Number Theory & Discrete Mathematics, 17 (2011), 47-51.
%H Robert Price, <a href="/A094028/a094028_1.txt">Comments on A094028 concerning Elementary Cellular Automata</a>, Feb 21 2016
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>
%H S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>
%H <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>
%H <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (101,-100).
%H <a href="/index/O#Olympiads">Index to sequences related to Olympiads and other Mathematical Competitions</a>.
%F G.f.: 1/((1-x)*(1-100*x)).
%F a(n) = 1+100*(100^n-1)/99. - _N. J. A. Sloane_, Apr 20 2008
%F a(n) = 100^(n+1)/99 - 1/99.
%F a(n) = A094027(2n+1).
%F a(n) = 100*a(n-1) + 1, a(0) = 1. - _Philippe Deléham_, Feb 22 2014
%F a(n) = 101*a(n-1)-100*a(n-2) for n>1. - _Wesley Ivan Hurt_, Oct 17 2015
%F a(n) = (100^(n+1) - 1)/99. - _Bernard Schott_, Apr 15 2021
%e From _Omar E. Pol_, Dec 13 2008: (Start)
%e =======================
%e n ....... a(n)
%e 0 ........ 1
%e 1 ....... 101
%e 2 ...... 10101
%e 3 ..... 1010101
%e 4 .... 101010101
%e 5 ... 10101010101
%e ======================
%e (End)
%p A094028:=n->1+100*(100^n-1)/99: seq(A094028(n), n=0..15); # _Wesley Ivan Hurt_, Oct 17 2015
%t CoefficientList[Series[1/((1-x)(1-100x)),{x,0,20}],x] (* or *) Table[ FromDigits[ PadRight[{},2n-1,{1,0}]],{n,20}] (* or *) LinearRecurrence[ {101,-100},{1,101},20] (* or *) NestList[100#+1&,1,20] (* _Harvey P. Dale_, Apr 27 2015 *)
%o (Maxima) A094028(n):=1+100*(100^n-1)/99$
%o makelist(A094028(n),n,0,30); /* _Martin Ettl_, Nov 06 2012 */
%o (Magma) [1+100*(100^n-1)/99 : n in [0..15]]; // _Wesley Ivan Hurt_, Oct 17 2015
%o (PARI) a(n) = 1+100*(100^n-1)/99 \\ _Felix Fröhlich_, Oct 17 2015
%o (PARI) Vec(1/((1-x)*(1-100*x)) + O(x^100)) \\ _Altug Alkan_, Oct 17 2015
%Y Bisection of A147759. [_Omar E. Pol_, Nov 13 2008]
%Y Cf. A002450, A056830, A094027.
%Y Cf. similar sequences of the form (k^n-1)/(k-1) listed in A269025.
%K easy,nonn
%O 0,2
%A _Paul Barry_, Apr 22 2004