OFFSET
1,1
COMMENTS
Also k such that z(k) = z(k+1) where z(k) = k - sopf(k).
Prime factors counted without multiplicity. - Harvey P. Dale, Dec 26 2015
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Harry J. Smith)
EXAMPLE
sopf(8) + 1 = 3, sopf(8 + 1) = 3.
MATHEMATICA
Flatten[Position[Partition[Table[Total[Transpose[FactorInteger[n]] [[1]]], {n, 2, 70000}], 2, 1], _?(#[[1]]+1==#[[2]]&), {1}, Heads->False]]+1 (* Harvey P. Dale, Dec 26 2015 *)
PROG
(PARI) sopf(n, s, fac, i)=fac=factor(n); for(i=1, matsize(fac)[1], s=s+fac[i, 1]); return(s);
j=[]; for(n=1, 100000, if(sopf(n)+1==sopf(n+1), j=concat(j, n))); j
(PARI) z(n)= { local(f, s=0); f=factor(n); for(i=1, matsize(f)[1], s+=f[i, 1]); return(n - s) }
{ n=0; zm=z(1); for (m=1, 10^9, zp=z(m + 1); if (zm==zp, write("b064111.txt", n++, " ", m); if (n==1000, break)); zm=zp ) } \\ Harry J. Smith, Sep 07 2009
CROSSREFS
KEYWORD
nonn
AUTHOR
Jason Earls, Sep 08 2001
STATUS
approved