login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A112094 Denominator of 3*Sum_{i=1..n} 1/(i^2*C(2*i,i)). 1
1, 2, 8, 120, 672, 5600, 79200, 50450400, 201801600, 10291881600, 17776886400, 2151003254400, 3805621142400, 643149973065600, 643149973065600, 31085582031504000, 226741892465088000, 65528406922410432000, 31039771700089152000, 414598230598090803264000, 16583929223923632130560 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..20.

C. Elsner, On recurrence formulas for sums involving binomial coefficients, Fib. Q., 43,1 (2005), 31-45.

FORMULA

3*Sum_{i >= 1} 1/(i^2*C(2*i, i)) = zeta(2) = Pi^2/6.

MAPLE

0, 3/2, 13/8, 197/120, 1105/672, 9211/5600, 130277/79200, 82987349/50450400, ... -> Pi^2/6.

PROG

(PARI) a(n) = denominator(3*sum(i=1, n, 1/(i^2*binomial(2*i, i)))); \\ Michel Marcus, Mar 10 2016

CROSSREFS

Cf. A112093.

Sequence in context: A099292 A284967 A064111 * A009658 A147794 A027530

Adjacent sequences:  A112091 A112092 A112093 * A112095 A112096 A112097

KEYWORD

nonn,frac

AUTHOR

N. J. A. Sloane, Nov 30 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 20 02:20 EDT 2019. Contains 327207 sequences. (Running on oeis4.)