The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A112094 Denominator of 3*Sum_{i=1..n} 1/(i^2*C(2*i,i)). 3
 1, 2, 8, 120, 672, 5600, 79200, 50450400, 201801600, 10291881600, 17776886400, 2151003254400, 3805621142400, 643149973065600, 643149973065600, 31085582031504000, 226741892465088000, 65528406922410432000, 31039771700089152000, 414598230598090803264000, 16583929223923632130560 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Table of n, a(n) for n=0..20. C. Elsner, On recurrence formulas for sums involving binomial coefficients, Fib. Q., 43,1 (2005), 31-45. FORMULA 3*Sum_{i >= 1} 1/(i^2*C(2*i, i)) = zeta(2) = Pi^2/6. EXAMPLE 0, 3/2, 13/8, 197/120, 1105/672, 9211/5600, 130277/79200, 82987349/50450400, ... -> Pi^2/6. PROG (PARI) a(n) = denominator(3*sum(i=1, n, 1/(i^2*binomial(2*i, i)))); \\ Michel Marcus, Mar 10 2016 CROSSREFS Cf. A112093. Sequence in context: A099292 A284967 A064111 * A009658 A147794 A358152 Adjacent sequences: A112091 A112092 A112093 * A112095 A112096 A112097 KEYWORD nonn,frac AUTHOR N. J. A. Sloane, Nov 30 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 26 17:58 EDT 2024. Contains 372840 sequences. (Running on oeis4.)