login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112093
Numerator of 3*Sum_{i=1..n} 1/(i^2*C(2*i,i)).
5
0, 3, 13, 197, 1105, 9211, 130277, 82987349, 331950131, 16929464521, 29241805241, 3538258509761, 6259995854281, 1057939300471201, 1057939300716589, 51133732870640471, 372975463296151087, 107789908892879155343, 51058377896658637853, 681986753565766904623961
OFFSET
0,2
LINKS
FORMULA
3*Sum_{i >= 1} 1/(i^2*C(2*i, i)) = zeta(2) = Pi^2/6.
MAPLE
0, 3/2, 13/8, 197/120, 1105/672, 9211/5600, 130277/79200, 82987349/50450400, ... -> Pi^2/6.
X:= [0, seq(3/(i^2*binomial(2*i, i)), i=1..20)]:
S:= ListTools:-PartialSums(X):
map(numer, S); # Robert Israel, Apr 08 2019
PROG
(PARI) a(n) = numerator(3*sum(i=1, n, 1/(i^2*binomial(2*i, i)))); \\ Michel Marcus, Mar 10 2016
CROSSREFS
Cf. A112094.
Sequence in context: A302143 A087601 A145503 * A085010 A259988 A165903
KEYWORD
nonn,frac
AUTHOR
N. J. A. Sloane, Nov 30 2005
STATUS
approved