login
A249604
a(n) = Sum_{i=1..n} Fibonacci(i)*10^(i-1).
2
1, 11, 211, 3211, 53211, 853211, 13853211, 223853211, 3623853211, 58623853211, 948623853211, 15348623853211, 248348623853211, 4018348623853211, 65018348623853211, 1052018348623853211, 17022018348623853211, 275422018348623853211, 4456422018348623853211
OFFSET
1,2
REFERENCES
D. R. Kaprekar, Demlofication of Fibonacci numbers, Journal of University of Bombay, Nov. 1945. Reprinted in D. R. Kaprekar, Demlo Numbers, Privately printed, Khare's Wada, Deolali, India, 1948, pp. 75-82.
FORMULA
O.g.f.: x/((1-x)*(1-10*x-100*x^2)). - Bruno Berselli, Nov 04 2014
From Colin Barker, Jun 26 2017: (Start)
a(n) = ((-10 + (5-21*sqrt(5))*(5-5*sqrt(5))^n + (5*(1+sqrt(5)))^n*(5+21*sqrt(5)))) / 1090.
a(n) = 11*a(n-1) + 90*a(n-2) - 100*a(n-3) for n>3.
(End)
EXAMPLE
To get a(10), for example:
..........1
.........1
........2
.......3
......5
.....8
...13
..21
.34
55
-----------
58623853211
PROG
(PARI) Vec(x / ((1-x)*(1-10*x-100*x^2)) + O(x^30)) \\ Colin Barker, Jun 26 2017
CROSSREFS
The analog for powers of 2 is A064108.
Sequence in context: A069613 A075858 A136307 * A038399 A053547 A053582
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 04 2014
STATUS
approved