login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that Sum_{i=1..k} i^2 divides Product_{i=1..k} i^2.
9

%I #27 May 09 2020 15:28:03

%S 1,7,13,17,19,24,25,27,31,32,34,37,38,43,45,47,49,55,57,59,61,62,64,

%T 67,71,73,76,77,79,80,84,85,87,91,92,93,94,97,101,103,104,107,109,110,

%U 115,117,118,121,122,123,124,127,129,132,133,137,139,142,143,144,145,147

%N Numbers k such that Sum_{i=1..k} i^2 divides Product_{i=1..k} i^2.

%C Product_{i=1..k} i^2 = (k!)^2 and Sum_{i=1..k} i^2 = k*(k+1)*(2*k+1)/6. - J. Mulder (jasper.mulder(AT)planet.nl), Jan 25 2010

%H J. Mulder, <a href="/A166602/b166602.txt">Table of n, a(n) for a(n) below 20000</a>

%e a(2) = A125314(2) = 7.

%p q:= k-> is(irem(k!^2, k*(k+1)*(2*k+1)/6)=0):

%p select(q, [$1..200])[]; # _Alois P. Heinz_, May 09 2020

%t Cases[Range[2, 5000], k_ /; Divisible[Factorial[k - 1]^2, 1/6 (-1 + k) k (-1 + 2 k)]] - 1 (* J. Mulder (jasper.mulder(AT)planet.nl), Jan 25 2010 *)

%o (PARI) isok(k) = ((k!)^2 % (k*(k+1)*(2*k+1)/6)) == 0; \\ _Michel Marcus_, May 09 2020

%Y Cf. A000330, A001044, A125294, A125314, A060462, A166604, A166605, A166606, A166607, A166608, A166609, A166610, A334735.

%Y Cf. A067656. - _R. J. Mathar_, Oct 23 2009

%K nonn

%O 1,2

%A _Alexander Adamchuk_, Oct 18 2009

%E Terms below 5000 by J. Mulder (jasper.mulder(AT)planet.nl), Jan 25 2010

%E More terms copied from the b-file by _R. J. Mathar_, Feb 14 2010