login
A348711
Integers sorted by decreasing value of sigma(x)/x^2, where sigma is the sum of divisors.
1
1, 2, 3, 4, 6, 5, 8, 12, 10, 7, 9, 14, 16, 18, 15, 20, 24, 11, 13, 30, 22, 21, 28, 36, 17, 26, 32, 40, 19, 27, 42, 48, 25, 34, 60, 23, 33, 44, 38, 54, 35, 45, 56, 72, 50, 39, 52, 29, 46, 31, 66, 84, 64, 70, 80, 90, 37, 51, 78, 96, 68, 58, 63, 120, 41, 62, 57, 76, 108, 55
OFFSET
1,2
COMMENTS
Is it possible to find distinct x and y such that sigma(x)/x^2 = sigma(y)/y^2 ?
LINKS
Michael De Vlieger, Scatterplot of sigma(x)/x^2 for x=1..240, highlighting the position of superabundant x (in A004394) in red.
EXAMPLE
For 1,2,3,4,6,5,... sigma(x)/x^2 gives: 1 > 3/4 > 4/9 > 7/16 > 1/3 > 6/25 > ...
MATHEMATICA
Block[{nn = Function[s, FirstPosition[s, #][[1]] &@ Fold[Max, s]]@ Array[DivisorSigma[1, #]/# &, 125], s}, s = Array[DivisorSigma[1, #]/#^2 &, nn]; #[[1 ;; FirstPosition[#, nn][[1]]]] &@ Map[FirstPosition[s, #][[1]] &, ReverseSort[s]]] (* Michael De Vlieger, Oct 31 2021 *)
PROG
(PARI) lista(nn) = Vec(vecsort(vector(10*nn, k, -sigma(k)/k^2), , 1), nn);
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Marcus, Oct 31 2021
STATUS
approved