login
A332128
a(n) = 2*(10^(2n+1)-1)/9 + 6*10^n.
3
8, 282, 22822, 2228222, 222282222, 22222822222, 2222228222222, 222222282222222, 22222222822222222, 2222222228222222222, 222222222282222222222, 22222222222822222222222, 2222222222228222222222222, 222222222222282222222222222, 22222222222222822222222222222, 2222222222222228222222222222222
OFFSET
0,1
FORMULA
a(n) = 2*A138148(n) + 8*10^n = A002276(2n+1) + 6*10^n = 2*A332114(n).
G.f.: (8 - 606*x + 400*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.
MAPLE
A332128 := n -> 2*(10^(2*n+1)-1)/9+6*10^n;
MATHEMATICA
Array[2 (10^(2 # + 1)-1)/9 + 6*10^# &, 15, 0]
PROG
(PARI) apply( {A332128(n)=10^(n*2+1)\9*2+6*10^n}, [0..15])
(Python) def A332128(n): return 10**(n*2+1)//9*2+6*10**n
CROSSREFS
Cf. A002275 (repunits R_n = (10^n-1)/9), A002276 (2*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes).
Cf. A332118 .. A332178, A181965 (variants with different repeated digit 1, ..., 9).
Cf. A332120 .. A332129 (variants with different middle digit 0, ..., 9).
Sequence in context: A226415 A226346 A217488 * A247484 A136364 A089670
KEYWORD
nonn,base,easy
AUTHOR
M. F. Hasler, Feb 09 2020
STATUS
approved