login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A089670
a(n) = S3(n,2), where S3(n, t) = Sum_{k=0..n} k^t *(Sum_{j=0..k} binomial(n,j))^3.
4
0, 8, 283, 6044, 101360, 1470640, 19361174, 237684384, 2768042208, 30935313600, 334481353690, 3519672963752, 36206551801264, 365363625058432, 3626585989411280, 35485636769545600, 342894590805622656, 3276865150482420480, 31008279252965786178
OFFSET
0,2
LINKS
Jun Wang and Zhizheng Zhang, On extensions of Calkin's binomial identities, Discrete Math., 274 (2004), 331-342.
FORMULA
a(n) = Sum_{k=0..n} k^2 *(Sum_{j=0..k} binomial(n,j))^3. - G. C. Greubel, May 26 2022
a(n) ~ 7/24 * 8^n * n^3 * (1 - 9/(14*sqrt(Pi*n)) + (12/7 - 3^(3/2)/(14*Pi))/n). - Vaclav Kotesovec, May 27 2022
MATHEMATICA
a[n_]:= a[n]= Sum[k^2*(Sum[Binomial[n, j], {j, 0, k}])^3, {k, 0, n}];
Table[a[n], {n, 0, 40}] (* G. C. Greubel, May 26 2022 *)
PROG
(SageMath)
def A089670(n): return sum(k^2*(sum(binomial(n, j) for j in (0..k)))^3 for k in (0..n))
[A089670(n) for n in (0..40)] # G. C. Greubel, May 26 2022
CROSSREFS
Sequences of S3(n, t): A007403 (t=0), A089669 (t=1), this sequence (t=2), A089671 (t=3), A089672 (t=4).
Sequence in context: A332128 A247484 A136364 * A221612 A348122 A060355
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jan 04 2004
STATUS
approved