login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A089672
a(n) = S3(n,4), where S3(n, t) = Sum_{k=0..n} k^t *(Sum_{j=0..k} binomial(n,j))^3.
4
0, 8, 1051, 47024, 1343372, 29595904, 549599246, 9039987264, 135800368320, 1901346478080, 25165027679242, 318105020914208, 3870088369412824, 45584244411107584, 522235732874214800, 5840992473138691072, 63970901725419781632, 687749464543749095424, 7273214936974305201570
OFFSET
0,2
LINKS
Jun Wang and Zhizheng Zhang, On extensions of Calkin's binomial identities, Discrete Math., 274 (2004), 331-342.
FORMULA
a(n) = Sum_{k=0..n} k^4 *(Sum_{j=0..k} binomial(n,j))^3. - G. C. Greubel, May 26 2022
a(n) ~ 31 * 2^(3*n - 5) * n^5 / 5 * (1 - 15/(62*sqrt(Pi*n)) + (75 - 5*sqrt(3)/Pi) / (31*n)). - Vaclav Kotesovec, May 27 2022
MAPLE
S3:= (n, t) -> add(k^t*add(binomial(n, j), j = 0..k)^3, k = 0..n);
seq(S3(n, 4), n = 0..40);
MATHEMATICA
a[n_]:= a[n]= Sum[k^4*(Sum[Binomial[n, j], {j, 0, k}])^3, {k, 0, n}];
Table[a[n], {n, 0, 40}] (* G. C. Greubel, May 26 2022 *)
PROG
(SageMath)
def A089672(n): return sum(k^4*(sum(binomial(n, j) for j in (0..k)))^3 for k in (0..n))
[A089672(n) for n in (0..40)] # G. C. Greubel, May 26 2022
CROSSREFS
Sequences of S3(n, t): A007403 (t=0), A089669 (t=1), A089670 (t=2), A089671 (t=3), this sequence (t=4).
Sequence in context: A316395 A176372 A047943 * A279881 A246114 A229164
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 04 2004
STATUS
approved