login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = S3(n,2), where S3(n, t) = Sum_{k=0..n} k^t *(Sum_{j=0..k} binomial(n,j))^3.
4

%I #15 May 27 2022 07:13:15

%S 0,8,283,6044,101360,1470640,19361174,237684384,2768042208,

%T 30935313600,334481353690,3519672963752,36206551801264,

%U 365363625058432,3626585989411280,35485636769545600,342894590805622656,3276865150482420480,31008279252965786178

%N a(n) = S3(n,2), where S3(n, t) = Sum_{k=0..n} k^t *(Sum_{j=0..k} binomial(n,j))^3.

%H G. C. Greubel, <a href="/A089670/b089670.txt">Table of n, a(n) for n = 0..1000</a>

%H Jun Wang and Zhizheng Zhang, <a href="http://dx.doi.org/10.1016/S0012-365X(03)00206-1">On extensions of Calkin's binomial identities</a>, Discrete Math., 274 (2004), 331-342.

%F a(n) = Sum_{k=0..n} k^2 *(Sum_{j=0..k} binomial(n,j))^3. - _G. C. Greubel_, May 26 2022

%F a(n) ~ 7/24 * 8^n * n^3 * (1 - 9/(14*sqrt(Pi*n)) + (12/7 - 3^(3/2)/(14*Pi))/n). - _Vaclav Kotesovec_, May 27 2022

%t a[n_]:= a[n]= Sum[k^2*(Sum[Binomial[n, j], {j,0,k}])^3, {k,0,n}];

%t Table[a[n], {n, 0, 40}] (* _G. C. Greubel_, May 26 2022 *)

%o (SageMath)

%o def A089670(n): return sum(k^2*(sum(binomial(n,j) for j in (0..k)))^3 for k in (0..n))

%o [A089670(n) for n in (0..40)] # _G. C. Greubel_, May 26 2022

%Y Sequences of S3(n, t): A007403 (t=0), A089669 (t=1), this sequence (t=2), A089671 (t=3), A089672 (t=4).

%Y Cf. A089658, A089664.

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_, Jan 04 2004