login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A097823
Numbers n such that n^2+n+41 (Euler's "prime generating polynomial") is not squarefree.
10
40, 603, 798, 890, 917, 1245, 1253, 1318, 1640, 1651, 1721, 2010, 2069, 2251, 2452, 2606, 2649, 3094, 3099, 3321, 3402, 3527, 3607, 4123, 4239, 4301, 4819, 4943, 5002, 5083, 5308, 5372, 5425, 5736, 5790, 5930, 5958, 5998, 6150, 6416, 6511, 6683, 6764
OFFSET
1,1
LINKS
Eric Weisstein's World of Mathematics, Prime-Generating Polynomial
EXAMPLE
a(1)=40: p(40)=40^2+40+41=1681=41^2, a(2)=603: p(603)=364253=197*43^2, a(11)=1721: p(1721)=2963603=43*41^3, a(68)=10428: p(10428)=108753653=743^2*197, a(91)=14144: p(14144)=200066921=47^4*41.
MATHEMATICA
Select[Range[10000], !SquareFreeQ[#^2+#+41]&] (* Harvey P. Dale, Nov 06 2011 *)
CROSSREFS
Cf. A013929 n is not squarefree, A002837 n such that n^2-n+41 is prime, A007634 n such that n^2+n+41 is composite, A005846 primes of form n^2+n+41, A097822 n^2+n+41 has more than 2 prime factors.
Sequence in context: A374241 A372977 A269497 * A263953 A002847 A057808
KEYWORD
nonn
AUTHOR
Hugo Pfoertner, Aug 26 2004
STATUS
approved