login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: A(x) = INV(x - x*INV(x - 3*x*INV(x - 3^2*x*INV(x - 3^3*x*INV(x - 3^4*x*INV(x - ...)))))), where INV(F(x)) = series reversion of F(x).
2

%I #9 Aug 25 2024 16:38:01

%S 1,1,5,65,2129,187485,47070033,34738190385,76319639400485,

%T 501572306898501857,9878465224237327196177,

%U 583441900063530059086230973,103363150111621009343497895054497,54932966279471274812844096131622516577,87581770519257906006964347036000601388169669

%N G.f.: A(x) = INV(x - x*INV(x - 3*x*INV(x - 3^2*x*INV(x - 3^3*x*INV(x - 3^4*x*INV(x - ...)))))), where INV(F(x)) = series reversion of F(x).

%e G.f.: A(x) = x + x^2 + 5*x^3 + 65*x^4 + 2129*x^5 + 187485*x^6 +...

%e where A(x) results from nested inversions of shifted series:

%e A(x) = Series_Reversion(x - x*B(x)), where

%e B(x) = x + 3*x^2 + 45*x^3 + 1755*x^4 + 172449*x^5 + 45558855*x^6 +...;

%e B(x) = Series_Reversion(x - 3*x*C(x)), where

%e C(x) = x + 9*x^2 + 405*x^3 + 47385*x^4 + 13968369*x^5 + 11070801765*x^6 +...;

%e C(x) = Series_Reversion(x - 9*x*D(x)), where

%e D(x) = x + 27*x^2 + 3645*x^3 + 1279395*x^4 + 1131437889*x^5 + 2690204828895*x^6 +...;

%e D(x) = Series_Reversion(x - 27*x*E(x)), where

%e E(x) = x + 81*x^2 + 32805*x^3 + 34543665*x^4 + 91646469009*x^5 + 653719773421485*x^6 +...;

%e E(x) = Series_Reversion(x - 27*x*F(x)), where

%e F(x) = x + 243*x^2 + 295245*x^3 + 932678955*x^4 + 7423363989729*x^5 + 158853904941420855*x^6 +...; ...

%o (PARI) {a(n)=local(G=x+x^2); for(k=0, n, G=serreverse(x-3^(n-k)*x*G+x*O(x^n))); polcoeff(G, n)}

%Y Cf. A194956, A195194, A195195.

%K nonn

%O 1,3

%A _Paul D. Hanna_, Sep 11 2011