login
A205083
Parity of A070885.
5
1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1
OFFSET
1
COMMENTS
A simple unpredictable binary sequence.
If you change a(1) to "2", then the concatenation of the first n terms yields the first length-n term of A024629 with positive even index. - Glen Whitney, Sep 17 2017
After the first term, this is also the parity of A061419. - Matthew House, Apr 21 2024
REFERENCES
Wolfram, S. A New Kind of Science. Champaign, IL: Wolfram Media, 2002, p. 122.
LINKS
Eric Weisstein's World of Mathematics, Wolfram Sequences.
MATHEMATICA
a[1] = 1; a[n_] := a[n] = If[EvenQ[a[n - 1]], 3 a[n - 1]/2, (3/2) (a[n - 1] + 1)]; Mod[Table[a[n], {n, 1, 100}], 2]
PROG
(PARI) A205083={my(maxx=50); q=ctr=1; print1(q%2, ", ");
while(ctr<maxx, q=3*ceil(q/2); ctr+=1; print1(q%2, ", ") ); } \\ Bill McEachen, Mar 12 2015
CROSSREFS
Sequence in context: A089451 A145099 A374045 * A070886 A262808 A217206
KEYWORD
nonn,easy
AUTHOR
Ben Branman, Jan 22 2012
STATUS
approved