login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A205083 Parity of A070885. 3
1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1

COMMENTS

A simple unpredictable binary sequence.

If you change a(1) to "2", then the concatenation of the first n terms yields the first length-n term of A024629 with positive even index. - Glen Whitney, Sep 17 2017

REFERENCES

Wolfram, S. A New Kind of Science. Champaign, IL: Wolfram Media, 2002, p. 122.

LINKS

Ben Branman, Table of n, a(n) for n = 1..20000

Eric Weisstein's World of Mathematics, Wolfram Sequences

MATHEMATICA

a[1] = 1; a[n_] := a[n] = If[EvenQ[a[n - 1]], 3 a[n - 1]/2, (3/2) (a[n - 1] + 1)]; Mod[Table[a[n], {n, 1, 100}], 2]

PROG

(PARI) A205083={my(maxx=50); q=ctr=1; print1(q%2, ", ");

while(ctr<maxx, q=3*ceil(q/2); ctr+=1; print1(q%2, ", ") ); } \\ Bill McEachen, Mar 12 2015

CROSSREFS

Cf. A070885.

Sequence in context: A039966 A089451 A145099 * A070886 A262808 A217206

Adjacent sequences:  A205080 A205081 A205082 * A205084 A205085 A205086

KEYWORD

nonn,easy

AUTHOR

Ben Branman, Jan 22 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 14 07:59 EDT 2021. Contains 342946 sequences. (Running on oeis4.)