OFFSET
0,3
COMMENTS
The number of positive even n such that a(n) has k+1 digits is A005428(k). - Glen Whitney, Jul 09 2017
The position of the rightmost "2" digit in a(3k), k >= 1, appears to be A087088(k). - Peter Munn, Jun 24 2020 [updated Peter Munn, Jul 14 2020 for new A087088 offset]
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
Matvey Borodin, Hannah Han, Kaylee Ji, Tanya Khovanova, Alexander Peng, David Sun, Isabel Tu, Jason Yang, William Yang, Kevin Zhang, and Kevin Zhao, Variants of Base 3 over 2, arXiv:1901.09818 [math.NT], 2019.
B. Chen, R. Chen, J. Guo, S. Lee et al, On Base 3/2 and its sequences, arXiv:1808.04304 [math.NT], 2018.
Michel Dekking, The Thue-Morse sequence in base 3/2, arXiv:2301.13563 [math.CO], 2023. See also J. Int. Seq., Vol. 26 (2023), Article 23.2.3.
Tanya Khovanova and Kevin Wu, Base 3/2 and Greedily Partitioned Sequences, arXiv:2007.09705 [math.NT], 2020.
J. S. Tanton, A collection of research problems. [archived version]
FORMULA
To represent a number in base b, if a digit is >= b, subtract b and carry 1. In fractional base a/b, subtract a and carry b.
a(0)=0, a(3n+r) = 10*a(2n)+r for n >= 0 and r = 0, 1, 2. - Jianing Song, Oct 15 2022
EXAMPLE
Representations of the first few numbers are:
0 = 0
1 = 1
2 = 2
3 = 2 0
4 = 2 1
5 = 2 2
6 = 2 1 0
7 = 2 1 1
8 = 2 1 2
9 = 2 1 0 0
10 = 2 1 0 1
11 = 2 1 0 2
12 = 2 1 2 0
13 = 2 1 2 1
14 = 2 1 2 2
15 = 2 1 0 1 0
[extended and reformatted by Peter Munn, Jun 27 2020]
MAPLE
a:= proc(n) `if`(n<1, 0, irem(n, 3, 'q')+a(2*q)*10) end:
seq(a(n), n=0..45); # Alois P. Heinz, Jun 19 2018
MATHEMATICA
a[ n_] := If[ n < 1, 0, a[ Quotient[n, 3] 2] 10 + Mod[ n, 3]]; (* Michael Somos, Jun 18 2014 *)
PROG
(Sage)
def basepqExpansion(p, q, n):
L, i = [n], 1
while L[i-1] >= p:
x=L[i-1]
L[i-1]=x.mod(p)
L.append(q*(x//p))
i+=1
L.reverse()
return Integer(''.join(str(x) for x in L))
[basepqExpansion(3, 2, n) for n in [0..40]] # - Tom Edgar, Hailey R. Olafson, and James Van Alstine, Jun 17 2014; modified and corrected by G. C. Greubel, Aug 20 2019
(PARI) {a(n) = if( n<1, 0, a(n\3 * 2) * 10 + n%3)}; /* Michael Somos, Jun 18 2014 */
(Haskell)
a024629 0 = 0
a024629 n = 10 * a024629 (2 * n') + t where (n', t) = divMod n 3
-- Reinhard Zumkeller, Sep 05 2014
CROSSREFS
KEYWORD
nonn,base
AUTHOR
EXTENSIONS
Tanton link corrected by Charles R Greathouse IV, Oct 20 2008
STATUS
approved