

A244040


Sum of digits of n in fractional base 3/2.


16



0, 1, 2, 2, 3, 4, 3, 4, 5, 3, 4, 5, 5, 6, 7, 4, 5, 6, 5, 6, 7, 7, 8, 9, 5, 6, 7, 5, 6, 7, 7, 8, 9, 8, 9, 10, 5, 6, 7, 7, 8, 9, 6, 7, 8, 7, 8, 9, 9, 10, 11, 9, 10, 11, 5, 6, 7, 7, 8, 9, 8, 9, 10, 6, 7, 8, 8, 9, 10, 8, 9, 10, 9, 10, 11, 11, 12, 13, 10, 11, 12, 5
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

The base 3/2 expansion is unique, and thus the sum of digits function is welldefined.


LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 0..10000


EXAMPLE

In base 3/2 the number 7 is represented by 211 and so a(7) = 2 + 1 + 1 = 4.


MATHEMATICA

a[n_]:= a[n]= If[n==0, 0, a[2*Floor[n/3]] + Mod[n, 3]]; Table[a[n], {n, 0, 85}] (* G. C. Greubel, Aug 20 2019 *)


PROG

(Sage)
def base32sum(n):
L, i = [n], 1
while L[i1]>2:
x=L[i1]
L[i1]=x.mod(3)
L.append(2*floor(x/3))
i+=1
return sum(L)
[base32sum(n) for n in [0..85]]
(Haskell)
a244040 0 = 0
a244040 n = a244040 (2 * n') + t where (n', t) = divMod n 3
 Reinhard Zumkeller, Sep 05 2014


CROSSREFS

Cf. A024629, A007953, A000120, A053735, A244041.
Cf. A024629, A246435, A053735.
Sequence in context: A285325 A135529 A061282 * A064514 A112342 A256094
Adjacent sequences: A244037 A244038 A244039 * A244041 A244042 A244043


KEYWORD

nonn,base


AUTHOR

James Van Alstine, Jun 17 2014


STATUS

approved



