OFFSET
1
COMMENTS
This sum is always -1, 0 or 1 because for odd prime p, both p-1 and p+1 cannot be squarefree; one of them will be divisible by 4. This also implies that terms in this sequence are zero only for 2 and odd primes p such that mu(p-1) = mu(p+1) = 0, which is A075432.
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..10000
Eric Weisstein's World of Mathematics, Moebius Function
Eric Weisstein's World of Mathematics, Legendre Symbol
FORMULA
Let p = prime(n), then a(n) = mu(p+(-1/p)), where (-1/p) is the Legendre symbol, A070750. (Pieter Moree). (This is true for n > 1) - Antti Karttunen, Jul 23 2017
MATHEMATICA
Table[MoebiusMu[Prime[n]+1] + MoebiusMu[Prime[n]-1], {n, 1, 150}]
PROG
(PARI) A089496(n) = (moebius(prime(n)-1)+moebius(prime(n)+1)); \\ Antti Karttunen, Jul 23 2017
CROSSREFS
KEYWORD
sign
AUTHOR
T. D. Noe, Nov 04 2003
EXTENSIONS
Term a(1) = 0 prepended by Antti Karttunen, Jul 23 2017
STATUS
approved