login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A089496
a(n) = mu(prime(n)+1) + mu(prime(n)-1), where mu is the Moebius function.
4
0, -1, 1, 1, 1, 1, 0, 0, 1, -1, -1, 1, -1, -1, 1, 0, 1, 1, -1, -1, 1, -1, 1, 0, 0, -1, -1, 1, -1, -1, 0, -1, -1, -1, 0, 0, 1, 0, 1, -1, 1, -1, -1, 1, 0, 0, 1, -1, 1, -1, 0, -1, 0, 0, -1, 1, 0, 0, 1, -1, -1, 0, 0, -1, 1, -1, 1, 0, 1, 0, -1, 1, -1, -1, 0, 1, 1, 1, -1, -1, -1, 1, -1, -1, -1, -1, 0, 1, 1, 1, 1, 1, 0, 0, -1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, -1
OFFSET
1
COMMENTS
This sum is always -1, 0 or 1 because for odd prime p, both p-1 and p+1 cannot be squarefree; one of them will be divisible by 4. This also implies that terms in this sequence are zero only for 2 and odd primes p such that mu(p-1) = mu(p+1) = 0, which is A075432.
LINKS
Eric Weisstein's World of Mathematics, Moebius Function
Eric Weisstein's World of Mathematics, Legendre Symbol
FORMULA
Let p = prime(n), then a(n) = mu(p+(-1/p)), where (-1/p) is the Legendre symbol, A070750. (Pieter Moree). (This is true for n > 1) - Antti Karttunen, Jul 23 2017
MATHEMATICA
Table[MoebiusMu[Prime[n]+1] + MoebiusMu[Prime[n]-1], {n, 1, 150}]
PROG
(PARI) A089496(n) = (moebius(prime(n)-1)+moebius(prime(n)+1)); \\ Antti Karttunen, Jul 23 2017
CROSSREFS
Cf. A000040, A008683, A089451 (mu(p-1) for prime p), A089495 (mu(p+1) for prime p), A089497 (mu(p+1)-mu(p-1) for prime p).
Sequence in context: A080110 A286419 A257799 * A182067 A196147 A097325
KEYWORD
sign
AUTHOR
T. D. Noe, Nov 04 2003
EXTENSIONS
Term a(1) = 0 prepended by Antti Karttunen, Jul 23 2017
STATUS
approved