login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A179876
Numbers h such that h and h-1 have same antiharmonic mean of the numbers k < h such that gcd(k, h) = 1.
19
2, 7, 11, 23, 47, 59, 66, 70, 78, 83, 107, 130, 167, 179, 186, 195, 211, 222, 227, 238, 255, 263, 266, 310, 322, 331, 347, 359, 366, 383, 399, 418, 438, 455, 463, 467, 470, 474, 479, 483, 494, 498, 503
OFFSET
1,1
COMMENTS
Corresponding values of numbers h-1 see A179875.
Numbers h such that A175505(h) = A175505(h-1).
Numbers h such that A175506(h) = A175506(h-1).
Antiharmonic mean B(h) of numbers k such that gcd(k, h) = 1 for numbers h >= 1 and k < h = A053818(n) / A023896(n) = A175505(h) / A175506(h).
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..2047 from R. J. Mathar)
EXAMPLE
For n=3: a(3) = 11; B(11) = A175505(11) / A175506(11) = 7, B(10) = A175505(10) / A175506(10) = 7.
MAPLE
antiHMeanGcd := proc(h)
option remember;
local a023896, a053818, k ;
a023896 := 0 ;
a053818 := 0 ;
for k from 1 to h do
if igcd(k, h) = 1 then
a023896 := a023896+k ;
a053818 := a053818+k^2 ;
end if;
end do:
a053818/a023896 ;
end proc:
n := 1:
for h from 2 do
if antiHMeanGcd(h) = antiHMeanGcd(h-1) then
printf("%d %d\n", n, h) ;
n := n+1 ;
end if;
end do: # R. J. Mathar, Sep 26 2013
MATHEMATICA
hmax = 1000;
antiHMeanGcd[h_] := antiHMeanGcd[h] = Module[{num = 0, den = 0, k}, For[k = 1, k <= h, k++, If[GCD[k, h] == 1, den += k; num += k^2]]; num/den];
Reap[n = 1; For[h = 2, h <= hmax, h++, If[antiHMeanGcd[h] == antiHMeanGcd[h - 1], Sow[h]; n++]]][[2, 1]] (* Jean-François Alcover, Mar 23 2020, after R. J. Mathar *)
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Jul 30 2010, Jul 31 2010
STATUS
approved